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ABSTRACT

We describe the first search for the rare kaon decay KL → π0π0νν̄. This search was

performed by the E391a collaboration at the KEK 12-GeV proton synchrotron. A

limit of 4.7 × 10−5 at the 90% confidence level is set. Additionally, we perform a

search for the supersymetric decay mode KL → π0π0 + Sgoldstino up to sgoldstino

masses of 200 MeV where we set a limit of 1.2× 10−6.

The bifurcation analysis technique for background prediction using data, but

maintaining a closed signal box is described. The result is extended to two back-

ground sources. Conditions on the applicability under correlated cuts are described.

This technique is applied to both a toy model and the background prediction for the

searches described above.
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CHAPTER 1

INTRODUCTION AND THEORY

The E391a experiment is the first dedicated experiment to search for the rare kaon

decay KL → π0νν̄. It has 4π photon veto coverage making it ideal instrument to

search for kaon decays with photons in the final state and missing particles. In this

thesis, I discuss searches for several decay modes with four photons in the final state.

These modes are the Standard Model mode KL → π0π0νν̄, the supersymmetric

mode KL → π0π0P where P → unobservable. The modes that we are searching

for share similar experimental signatures. The KL → π0π0νν̄ mode is predicted to

exist within the Standard Model and we will focus on its phenomenology in that

case. On the other hand, the KL → π0π0P mode is purely a prediction of certain

models of supersymmetry with no Standard Model equivalent. Both of these decays

are examples of flavor changing neutral currents.

We begin with an overview of the physics of the neutral kaon system. Kaons are

mesons consisting of a strange (or anti-strange) quark and either an up or a down

quark. They have isospin of one half and a strangeness of ±1. There are four varieties

of kaons, charged kaons, K±, and two neutral kaons, K0 and K̄0. The neutral kaons

can mix through a second-order weak interaction [3]. We therefore observe a linear

combination of the neutral kaons. We can form eigenstates of the charge-parity (CP)

symmetry, K1 with CP = +1 and K2 with CP = −1. The CP even eigenstate, K1,

primarily decays to 2π which occurs quickly and the CP odd eigenstate, K2, primarily

decays to 3π which occurs on a slower timescale. However, CP is not conserved in

weak interaction as first experimentally observed by Cronin and Fitch in 1964 through

a decay of the long lived neutral kaon to 2π. Therefore, the observed particle wasn’t

the eigenstate of CP, and rather a mixture of K2 with a small amount of K1, which

1
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we call KL [4].

1.1 Flavor Physics in the Kaon System

The Standard Model includes three families or flavors of quarks which are distin-

guished only by their mass. The flavors are conserved by the strong interaction, but

the weak force can cause changes of flavors. The kaon system has traditionally been

a rich laboratory for the study of these processes. The Lagrangian for the charged

weak interaction is given by:

−LW± =
g√
2
ūLiγ

µ(VuLV
†
dL)ijdLjW

±
µ + h.c.. (1.1)

Here ūLi and dLj are the left-handed quarks and W±
µ is the gauge boson.

In the Standard Model the coupling between flavors of quarks is described by the

Cabbibo-Kobayashi-Maskawa (CKM) Matrix. This 3×3 unitary matrix contains the

couplings between the flavors of quarks:

VCKM = VuLV
†
dL (1.2)

In the Wolfenstein parameterization [5], the matrix is:

VCKM =


VudVusVub

VcdVcsVcb

VtdVtsVtb

 =


1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 +O(λ4).

(1.3)

The fact that the CKM matrix is unitary requires that the following relationships
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are true:

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0, (1.4)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0, (1.5)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.6)

These relationships can be represented geometrically by a triangle in the complex

plane. The unitarity triangle formed from Eqn 1.4 can be rescaled and with the

selection of phase such that VcdV
∗
cb is real, the height of the triangle is given by the

parameter η and the horizontal position of the vertex is given by ρ. This triangle is

shown in Fig 1.1.

!

"#

$

%

KL!!0""

KL!2!0""

K+!!+""

(0,0)

(#,$)

(1,0)

Figure 1.1: An unitarity triangle.

1.2 The KL → π0π0νν̄ Decay in the Standard Model

The decay KL → π0π0νν̄ is a flavor changing neutral current process. It involves

an s → dνν̄ transition. Like the “Golden Mode” of KL → π0νν̄, this mode is not
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sensitive to long range interactions so its branching ratio can be predicted with little

theoretical uncertainty. This is because as a fully neutral mode it does not suffer

from long-range radiative corrections and can be related to a measured semi-leptonic

decay mode Ke4. We follow the treatment given in [6].

The effective Lagrangian can be written:

L =
GF√

2

α

2π sin θ2
W

[V ∗
csVcdX̄(xc, y`)+V ∗

tsVtdX(xt)]× s̄γµ(1−γ5)dν̄γµ(1−γ5)ν +H.c.

(1.7)

The functions X(xt) and X̄(xc, y`) contain the dependence on the charm-quark, top-

quark, and tau-lepton masses in terms of xi = M2
i /M2

W and y` = m2
`/M

2
W :

X(xt) =
xt

8

[
xt + 2

xt − 1
+

xt − 2

(xt − 1)2
log xt

]
. (1.8)

The function X̄(xc, y`) has a complicated form and can be found in reference [7].

Figure 1.2: The short-ranged Feynman diagrams which contribute to KL → π0π0νν̄.
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The calculation of the decay rate depends on the matrix element for the hadronic

current s̄γµ(1− γ5)d between the kaon and pion states. This matrix element can be

extracted from analysis of the K`4 decay using isospin symmetry. The analysis of

K`4 uses the form factors defined by [8]. The most recent prediction of the branching

by [9] is:

Br(KL → π0π0νν̄) = (1.4± 0.4)× 10−13. (1.9)

Determining the parameters of the CKM matrix is an important test of the Stan-

dard Model. The branching ratio of KL → π0π0νν̄ is proportional to ρ2. The decay

KL → π0νν̄ is proportional to η2. Measurement of this branching ratio would allow

us to specify the position of the vertex of the unitarity triangle purely through neutral

decays of KL. It is important to note that this is an extremely small branching ratio,

two orders of magnitude smaller than KL → π0νν̄ and eight orders smaller than Ke4.

1.2.1 Kinematics of KL → π0π0νν̄

The KL → π0π0νν̄ decay has a vector matrix element which causes the momentum

to vary from what a pure phase space decay would produce.

The decay can be described as a two-body decay of the kaon into a dipion and

dilepton. We can then treat the decay of the dipion and dilepton in their own center

of mass systems. The decay can be described by five variables:

1. sπ = M2
π0π0 , square of the center of mass energy of the dipion system.

2. sν = M2
νν̄ , square of the center of mass energy of the dilepton system.

3. θ, angle of one of the π0 in the center of mass frame of the dilepton with respect

to the direction of flight of the dilepton in the kaon rest frame.
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4. ζ, angle of the ν̄ in the center of mass frame of the dipion with respect to the

direction of flight of the dipion in the kaon rest frame.

5. φ, the angle between the plane formed by the pions in the kaon rest frame and

the corresponding plane formed by the neutrinos.

Figure 1.3: The KL → π0π0νν̄ decay into dipion and dilepton systems.

The labels of the four-momenta are p1 and p2 for the two pions and the neutrinos

are pν and pν̄ . The three-momenta are in bold. The angular variables range 0 ≤ θ ≤

π, 0 ≤ ζ ≤ π, and −π < φ ≤ π. v̂ is the unit vector along the direction of flight of

the dipion. The projection of p1 perpendicular to v̂ is ĉ. d̂ is an unit vector along

the projection of pν̄ perpendicular to v̂:

cos θ = v̂ · p1/|p1|, (1.10)

cos ζ = v̂ · pν̄/|pν̄ |. (1.11)

We introduce the following combinations of momentum and scalar products to sim-
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plify the form factor:

P = p1 + p2, (1.12)

L = pν̄ + pν , (1.13)

Q = p1 − p2, (1.14)

Q2 = 4m2
π − sπ, (1.15)

P · L =
1

2
(m2

K − sπ − sν), (1.16)

X = [(P · L)2 − sπsν ]1/2. (1.17)

1.2.2 KL → π0π0νν̄ Form Factor

The distribution of the KL → π0π0νν̄ decay depends on the hadronic current s̄γµ(1−

γ5)d between the kaon and the two pions. This can be extracted from measurements

of the K`4 decay using isospin symmetry. Isospin symmetry gives us the relationship:

〈π0π0|(s̄d)V−A|K0〉 = 〈π0π0|(s̄u)V−A|K+〉. (1.18)

The decays K± → ππe±ν̄ in general have four terms in the matrix elemenet. In the

case of K+ → π0π0e+νe and KL → π0π0νν̄ the fact that the pions of the final state

are identical neutral pions means they cannot be in an I = 1 state. The transition

requirement of δI = 1
2 elminates two of the terms. We can then use this to relate the

matrix elements of KL → π0π0νν̄ to those of K+ → π0π0e+νe. The matrix element

for when the pions are in the I = 0 state. The K`4 decays have the matrix elements:

〈π+(p1)π
−(p2)|s̄γµγ5d|K0

L(k)〉 =
i

MK

[
PµF + LµG + (k − P )µR

]
. (1.19)
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〈π+(p+)π−(p−)|s̄γµγ5u|K+(k)〉 =
H

M3
K

εµναβkν(p+ + p−)α(p+ − p−)β . (1.20)

The isospin considerations above mean that the G and H terms are zero for KL →

π0π0νν̄. Additionally the R term is suppressed by the lepton mass, in this case the

neutrino mass. This can obviously be ignored for our purposes.

The F term has the form:

F = (fs + f ′sq
2 + O(q4))eiδ0

0 . (1.21)

(1.22)

Here the pion momentum in the pion system reference frame is q2 = ((p+ + p−)2 −

4m2
π)/4m2

π and δI
J are the the π - π scattering phase shifts. The phase shift δ0

0 can

be related to the scattering length. The constants fs and f ′s have been measured in

the Ke4 decay [10],[11]:

fs = 5.75± 0.02± 0.08, (1.23)

f ′s = 1.06± 0.10± 0.40. (1.24)

(1.25)

The differential decay rate for KL → π0π0νν̄ is given by:

dΓ5 =
G5

F V 2
us

212π6m5
K

XσπJ5(P
2, L2, θ, ζ, φ). (1.26)

The function σπ is defined as:

σπ = (1− 4m2
π/sπ)1/2. (1.27)
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Where the function J5 is:

J5 = I1 + I2 cos 2θ. (1.28)

Where the distribution functions I1 and I2 are:

I1 = −I2 =
1

8
{2|XF |2 sin2 ζ}. (1.29)

The K`4 and KL → π+π−νν̄ decays have a much more complex form factor with

nine distribution functions. The isospin values of the π0’s and the fact that there are

two identical particles simplify the structure considerably.

1.3 Supersymmetry

One of the leading theories for physics beyond the Standard Model is supersymmetry.

In supersymmetric models, there is a symmetry between fermions and bosons. For

every fermion there is a corresponding bosonic partner and for each boson there is a

fermion. This symmetry does not exist at low energies and therefore must be broken

in some manner. There are many models of supersymmetry breaking, but we are

interested in models that “spontaneously” break supersymmetry.

The spontaneous breaking of any global symmetry results in a massless Nambu-

Goldstone mode with the same quantum numbers as the symmetry generator. In the

case of supersymmetry, the symmetry generator is fermionic resulting in a Nambu-

Goldstone fermion, the goldstino. The exact nature of the goldstino depends on the

specific model of supersymmetry. For example, in the case of supegravity theories,

the superpartner of the graviton, the gravitino, absorbs the goldstino and thereby

aquires a mass.
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As the goldstino is part of a superfield it has a superpartner, the complex scalar

field z = (S + iP )/
√

2. The real component, S, is the scalar sgoldstino and the imag-

inary part, P , is the pseudoscalar sgoldstino [12]. The masses of these two particles

are model dependent and could be below a few GeV or a few MeV. Sgoldstinos are

light in in some gravity mediated theories and gauge mediated models.

1.3.1 The Pseudoscalar Sgoldstino

We consider the case where parity is conserved in the interactions of the sgoldstino

with quarks and gluons. The Lagrangian for the low energy interactions of P with

quarks is written [13]:

L = −P · (h(D)
ij · d̄iiγ

5dj + h
(U)
ij · ūiiγ

5uj), (1.30)

where

di = (d, s, b) ui = (u, c, t), (1.31)

h
(D)
ij =

1√
2

m̃
(LR)2
D,ij

F
. (1.32)

The energy scale of supersymmetry breaking is
√

F . Off-diagonal elements in the

coupling matrices produce flavor changing and CP violating processes.

1.4 The KL → π0π0P Decay

If the sgoldstino is light enough (mP < mKL
− 2mπ0) then the decay of a neutral

kaon to 2π0 and the pseudoscalar sgoldstino is a very interesting probe of the physics.

This is not an unreasonable possibility as it arises in a variety of models.
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The decay K+ → π+π0P is forbidden at first order by the conservation of total

isospin. The violation of isospin, chiral loops and derivative couplings in the effective

meson-sgoldstino Lagrangian all allow the decay to occur.

Figure 1.4: Diagram of the KL → π0π0P decay.

1.4.1 Branching Ratio and Supersymmetry Parameters

The branching ratio of KL → π0π0P gives us direct means of determing some of the

couplings between the sgoldstino and quarks. The partial width of the KL for this

decay is [13]:

Γ(KL → π0π0P ) = (Reh
(D)
12 )2

MKB2
0

1152π3f2
π
· F (Mp, mπ, mK). (1.33)

Here F (mp, mπ, mK) is a correction factor accounting for finite masses of pions and

P; at mP ≈ 0 it is F ≈ 0.3. B0 and fπ are related to the quark condensate,

〈0|qq̄|0〉 = −1
2B0f

2
π . Then B0 = M2

K/(md + ms) = 1.9GeV and fπ = 130MeV . This

allows us to estimate the branching ratio as a function on the real component of the

coupling to be:

Br(KL → π0π0P ) ∼ 1.4× 1014 · (Reh
(D)
12 )2. (1.34)

The coupling constants are constrained by the limits on the mass difference be-
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tween KL and KS and requiring that the contribution to the ε CP violation parameter

in the kaon system is less than its measured value:

∆MK ≡ MK0
L
−MK0

S
= [(Reh

(D)
12 )2 − (Imh

(D)
12 )2]

B2
0f2

K

MK(M2
K −M2

P )
, (1.35)

|(Reh
(D)
12 )2 − (Imh

(D)
12 )2| < 5× 10−15, (1.36)

∆M ′ = Reh
(D)
12 · Imh

(D)
12 ·

B2
0f2

K

MK(M2
K −M2

P )
, (1.37)

|Reh
(D)
12 · Imh

(D)
12 | < 1.5× 10−17. (1.38)

Depending on the phase of h
(D)
12 bounds are set on the possible Br(KL → π0π0P ) and

other related kaon decays. If the real and imaginary components are approximately

equal then:

Br(KL → π0π0P ) . 1× 10−3. (1.39)

If the imaginary component is close to zero then there are no meaningful bounds on

on Br(KL → π0π0P ). In the case that the real component is close to zero then we

have the bound:

Br(KL → π0π0P ) . 1.5× 10−6. (1.40)

1.4.2 Decay of the Sgoldstino

The sgoldstino can couple to a wide variety of particles with differing strengths. In

this analysis, we assume that sgoldstino does not interact or decay to visible particles

inside the detector.
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1.5 Previous Limits

We briefly discuss other searches for the sgoldstino. The sgoldstino can potentially

couple to a variety of different particles and has a wide range of possible mass. A

variety of experiments and observations can set limits on different scenarios. These

limits are summarized in Tables 1.5.2 and 1.2.

1.5.1 Other Kaon Experiments

The sgoldstino can appear in decays of the charged kaons. The branching ratio of the

charged mode is estimated from chiral perturbation theory to be:

Br(K− → π−π0P ) ∼ 8.5× 1010 · |h(D)
12 |2. (1.41)

The mode K− → π−π0P was searched for by the ISTRA+ experiment. ISTRA+

is located at the IHEP 70 GeV proton synchtron U-70. ISTRA+ uses a negative

unseperated beam of ≈ 25GeV/c. A total of 713 million trigger events were recorded.

Their primary background is the decay KL → π0π0π− which limits their sensitivity

in the region of MP = Mπ0 . They set a limit for at 9× 10−6 for mP between 0 and

200 MeV/c2 [1]. The limits for different masses are shown in Fig 1.5. The coupling

of the sgoldstino to the charged kaon is suppressed by isospin conservation, so the

bound on the coupling constant derived from this is significantly weaker than we can

achieve with the neutral mode.

1.5.2 Astrophysical

A wide variety of astrophysical phenomena have been used to search for the axion.

These studies can also be used to set limits on the interactions of the sgoldstino,



14

Figure 1.5: The 90% upper limit for the Br(K− → π−π0P ) versus sgoldstino mass

compared with the E787 upper limit (left), the 90% Cl upper limit for the |hD
12|

compared with the theoretical limit from KL −KS mass difference (right) [1]
.

either its coupling to photons or electrons [14]. A light pseudoscalar can be produced

by a star through the Primakoff process, γ → P in an external magnetic field. The

inverse Primakoff process can be used to detect pseudoscalars in the “helioscope”

method where a dipole magnet aimed at the Sun is used to change pseudoscalars

into X-rays. This process can also occur in galactic magnetic fields, the absence of

anomalous X-ray fluxes from 1987A from this provides the tightest bound on gγ , but

it applies for an unrealistically small mP . Therefore, the helium-burning lifetime of

Horizontal Branch Stars (HBS) in globular clusters provides the most sensitive probe

of the supersymmetry breaking scale F for small mP . These limits apply for masses of

the sgoldstino significantly lower than the KL → π0π0P decay can probe. The upper

mass from these searches is 10 MeV from SN1987a for the coupling of sgoldstinos to

fermions.
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Experiment mP Coupling Constant
√

F , GeV m3/2
Helioscope . 0.03eV gγ < 6× 10−10 > 0.5× 106 > 60eV

SN1987A < 1keV gγ < 5.56× 10−10 5× 105 > 50eV
or or or

> 10−2 gγ < 120 < 3× 10−6eV

HBS < 10keV gγ < 6× 10−11 > 4× 106 > 3.5keV

Table 1.1: A summary of astrophysical limits on the sgoldstinio.

1.5.3 Laboratory

Bounds on the sgoldstino can also be set by studying the behavior of laser beams. In

a transverse magnetic field the production of real sgoldstinos would cause a rotation

in the beam polarization. Additionally, the emission and absorption of virtual sgold-

stinos would produce ellipticity in the beam. These effects have not been observed

and this places limits on the gγ coupling. Light pseudoscalars could also allow light

to penetrate an optic shield. In this scenario light would convert to the sgoldstino

through the Primakoff process and then reconvert on the other side. These limits

apply for sgoldstino masses significantly below that which can be studied in kaon

decays.

It is also possible to use reactor experiments to detect sgoldstinos. Here the sgold-

stino would be produced by an isoscalar transition and then the sgoldstino detected

by means of its decay products. Again this technique probes mass values significantly

below what KL → π0π0P can probe. These are limited to masses less than 1.5 MeV.

1.5.4 Evidence for a pseudoscalar

The HyperCP collaboration has found evidence for the existence of a new particle

of mass 214.3± 0.5MeV/c2 [15] whose properties are consistent with a pseudoscalar

particle [16]. They studied the decay Σ+ → pµ+µ−. In the Standard Model the ratio
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Experiment mP Coupling
√

F , GeV m3/2
Constant

Laser < 10−3eV gγ < 3.6× 10−7 > 2.0× 104 > 93MeV

γ-regeneration < 10−3eV gγ < 6.7× 10−7 > 1.5× 104 > 50MeV

NOMAD . 40eV gγ < 6.7× 10−4 > 970 > 0.22

Reactor e+e− < 1.5MeV g
(0)
N · Br

1/2
(P→X) . & 3×105

Br−1/4
(P→X)

& 25eV
Br1/2

(P→X)

Final State 7× 10−10

Reactor γγ < 1MeV g
(0)
N · Br

1/2
(P→X) . & 9×103

Br−1/4
(P→X)

& 20MeV
Br1/2

(P→X)

Final State 8× 10−7

Table 1.2: Limits on pseudoscalar sgoldstino couplings.

is of Σ+ → pµ+µ− to Σ+ → pe+e− is bounded:

1

120
&

Γ(Σ+ → pµ+µ−)

Γ(Σ+ → pe+e−)
&

1

1210
. (1.42)

A limit has been set for the branching ratio of Σ+ → pe+e− as < 7× 10−6.

The HyperCP group observed three events which allowed them to set a branching

ratio of [8.66.6
−5.4(stat) ± 5.5(syst)] × 10−8. The invariant mass of the µ+µ− of these

events were grouped near 214 MeV. This suggests that there is intermediate state

which when fit for has a mass of 214.3± 0.5 MeV. This intermediate state is allowed

by existing constraints to be a pseudoscalar or axial-vector particle.



CHAPTER 2

E391A EXPERIMENT

In this chapter I will describe the components of the E391a experiment. There are

two major components to the experiment, the E391a beamline, which produces a well

collimated beam of neutral kaons for study, and the E391a detector to measure the

decays of interest.

2.1 The E391a Beam

The E391a beam line was designed with the search for KL → π0νν̄ as the primary

goal. Of primary importance is making a narrow, well collimated beam to minimize

the transverse momentum of the kaon. The second important consideration is the

eliminating as much as possible the beam halo.

The beam is produced by 12 GeV protons striking a platinum target. The target

is 60 mm thick which corresponds to 0.68 interaction lengths and 8 mm in diameter.

The beam line is 10m long to reduce the number of neutral hyperons in the beam.

There are a series of six collimators made of 5 cm thick tungsten disks arranged

as shown in Figure 3.1. After the first collimator there is are lead and beryllium

absorbers. During standard physics running the lead absorber was inserted in the

beam to increase the kaon to neutron ratio.

The regions of the beam after collimation are described by the lines in the schematic

diagram.

A. The edge of the 2 mrad beam core. It is defined by the surfaces of collimators

C2 and C3.

17
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Figure 2.1: The e391a neutral beamline.

B. Connects the edge of the target and the end of C3 and shows the penumbra due

to the size of the target.

C. Connects the beginning of C2 and P6. This is the limit of secondaries produced

by the lead and beryllium absorbers.

D. The outer edge of the beam. It is the boundary for secondaries produced by

interaction with the collimators and for particles scattered by air in the beam

line. The line connects the end of C3 and P6.

2.1.1 Beam Profile

The beam profile was measured in a series of beam-survey experiments in April and

December 2000 and December 2001 [2]. The profiles of photons, neutrons and charged

particles were measured separately using a counter telescope. The telescope consisted

of a 1 cm-thick plastic scintillator, a 6 cm-thick plastic scintillator, and a lead scintil-
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Figure 3.4: Photo of the collimator C1.
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Figure 2.2: Schematic diagram of e391a collimation system.
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lator sandwich counter. The sandwich counter had 15 layers of 1 mm lead and 5 mm

thick scintillator for a total thickness of 9 cm or 2.85 radiation lengths. The counters

had a cross section of 4 × 5cm2. The front face of the telescope was located 1.7 m

downstream of C6 and an X-Y stage was used to move the telescope.

Charged particles were identified as a coincidence of the two scintillator counters.

Photons were identified as a signal in the sandwich counter vetoed by the first counter.

Signals in the second scintillator without signals in the first scintillator were identified

as neutrons.

2.2 Detector Overview

The E391a detector consists of a hermetic photon veto system and a CsI crystal

calorimeter. Most of the detector is enclosed in a steel vacuum vessel, excluding CC05

- CC07 and the Back-Anti. The detector consists of the CsI Array which is used to

detect the photons produced by the decay modes and a variety of other detectors

which are either photon or charged vetoes. The photon vetoes are the Main and

Front Barrels, a series of collar counters located close to the beamline, and finally the

Back-Anti which is located directly in the beam as the farthest downstream detector.

The charged vetoes are the Charge Veto which is front of the CsI Array, the Barrel

Charge Veto which is an inner layer of the Main Barrel, and the Beam Hole Charge

Veto which sits in front of the Back-Anti.

In the following sections the detector’s energy spectrums are compared between

data and Monte Carlo. The data sample is four cluster events taken from the physics

trigger (Section 3.2.3). The Monte Carlo sample is KL → π0π0 and KL → π0π0π0

events which is normalized to the data through the size of the KL → π0π0 signal

peak (Section 4.2).
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Simulation results, which include detector re-
sponses, are shown by the solid lines in Fig. 9.
One of the important corrections for the detector
efficiencies is a size effect of the telescope, and the
other is detection efficiencies for various particles.
Table 1 shows a typical efficiency estimated from
the detector simulation. Actually, the effects of size

and efficiencies were corrected event by event.
Data and the simulation results show a reasonably
good agreement, as shown in Fig. 9. Especially, the
sharp edges were well reproduced by the simula-
tion. The size of the beam core, which was smeared
by the detector-size effect, was 3.70 cm (FWHM)
for the data, and it is 3.72 cm for the simulation.
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Fig. 8. Schematic view of the setup for the beam-profile measurements.
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H. Watanabe et al. / Nuclear Instruments and Methods in Physics Research A 545 (2005) 542–553548

Figure 2.3: Measured beam profiles. The left-side figures are the case with no absorber
in the beam. The figures on the right are with the Pb-absorber inserted. Solid lines
are the results of Monte Carlo simulation. [2]
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Figure 2.4: The e391a detector.

2.2.1 Vacuum System

To reduce beam interactions which could produce background the E391a detector is

kept in vacuum [17]. There are two different regions of vacuum maintained. Region 1,

also called the low vacuum region, is maintained at less than 1 Pa (10−5 atmospheres)

during operation. The high vacuum region, region 2, is at a pressure of less than

10−4 Pa (10−9 atmospheres) during operation. The high vacuum region contains the

fiducial decay region inside the main barrel. The two regions are separated by a thin

multi-layer vacuum membrane of 190 µm thickness or 4 × 10−4X0. The membrane

consists of two layers of 80 µm low-density polyethylene, an aluminized EVAL film

of 15 µm, an a 15 µm film of nylon.

Unfortunately, this membrane is a major background source. The measures taken

to secure the membrane were not sufficient and the membrane drooped into the beam

line. Fig. 2.6 shows the membrane relative to the beam hole. There it served as
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Figure 1  Experimental setup of E391a detector 

 

 

 

Figure 2  Pressure dependence of discharge voltage.  The black line is the Pashen 

curve for 1 mm gap. The red one shows the measured values for PMT-R4275 

used for CsI calorimeter readout. 

Figure 2.5: The E391a detector with the locations of the different vacuum regions

indicated. Region 1 is at < 1 Pa and region 2 is at < 10−4 Pa. They are separated
by a thin vacuum membrane

target for interactions of neutrons in the beam core. This problem has been fixed for

the later runs of the experiment.

2.3 Collar Counters

The collar counters are a series of electromagnetic calorimeters close to the beamline.

There are six collars, two through seven. Initial plans called for a first collar counter,

but simulation studies indicated that it did not significantly reduce photon inefficiency

or background rate, so it was removed at the design stage.

2.3.1 Collar Counter 2

Collar Counter 2 is located inside the downstream end of the Front Barrel. It is a lead-

scintillator sandwich Shashlyck calorimeter. A Shashlyck calorimeter is distinguished

by its use of optical fibers running perpendicular to the the lead and scintillator plates

to pass the scintillation light to the photo-tubes. CC02 is divided into eight pentagon
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Figure 2.6: The vacuum membrane hanging in the beam line. The blue box indicates
the beam hole in the center of CC03.

shaped segments as shown in Fig. 2.7. The outer diameter of CC02 is 60.8 cm and

the inner diameter is 12.7 cm.

There are 45 .5 cm scintillator plates. Two thicknesses of lead plates are used,

1 mm at the upstream and downstream sides and 2 mm lead in the center. There

are a total of 14 1 mm pieces and 29 2 mm pieces. Each piece of lead is has a 0.375

mm layer of brass on each side for support and ease of machining. For structural

support there are also 1.5 cm aluminum plates at the ends of the detector with a

single scintillator plate outside of them. CC02 is in total 13.8 X0 thick.

Each plate has 296 holes which are of 1.5 mm diameter to feed through the optical

fibers. The holes are regularly spaced with a 1 cm separation. The optical fibers are

wavelength shifting fibers that shift the scintillation light into to green light. The

fibers from each section are bundled together and fed to a single PMT. The PMT’s

are located at the front of the Front Barrel which requires the optical fiber to be 2.8
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m long. This causes an attenuation of the light signal by approximately a factor of

two. A comparison of the energy deposit in CC02 in data and Monte Carlo is shown

in Fig. 2.8.

Figure 2.7: Cross section of one of the CC02 modules

2.3.2 Collar Counter 3

Collar Counter 3 is is a tungsten scintillator sandwich calorimeter located inside the

CsI array. The plates are aligned parallel to the beam axis in order to veto decays

inside the beam hole. CC03 is 25 × 25 cm with a beam hole of 12 × 12 cm. Six

rectangular modules make up CC03. The detector is 5.2 X0 thick. A comparison of

the energy deposit in CC03 in data and Monte Carlo is shown in Fig. 2.9.
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10
-1

1

10

10
2

10
3

0 0.002 0.004 0.006 0.008 0.01

CC03 Energy
ID

Entries

Mean

RMS

          15002

         722942

 0.2381E-03

 0.8798E-03

Energy (GeV)

ID

Entries

Mean

RMS

         987102

         731684

 0.4082E-02

 0.2692E-02

Energy (GeV)

0

1

2

3

4

5

6

7

8

9

0 0.002 0.004 0.006 0.008 0.01

Figure 2.9: Energy deposit in CC03 in GeV. Data is represented by the black dots and
Monte Carlo by the red line. Samples are normalized by the maximum bin. Lower
plot is ratio of Monte Carlo to data.



27

2.3.3 Collar Counters 4 & 5

Collar Counter 4 and 5 are lead-scintillator sandwich calorimeters located downstream

of the CsI array. They serve to detect photons which pass through the beamhole. Both

detectors are 40 × 40 cm squares with 6.2 × 6.2 cm beam holes. A diagram of the

CC04 cross-section is shown in Fig. 2.10.

CC04 consists of 32 5 mm scintillator plates and 32 2 mm lead plates serving as a

calorimeter. This totals 11.8 radiation lengths. Two scintillator plates are placed on

the upstream end to serve as a charge veto. The scintillation light is read out through

wave length shifting optical fibers. Two PMT’s read out the charge veto layers and

two read out the calorimeter layers.

The design of CC05 is similar, but with only 30 layers in the calorimeter and the

charged veto is on the downstream end of the detector to protect against backsplash

from the detectors downstream of it. A comparison of the energy deposit in CC05 in

data and Monte Carlo is shown in Fig. 2.11.

Figure 2.10: Diagram of CC04
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2.3.4 Collar Counter 6 & 7

Collar counters 6 and 7 are each made of 10 lead glass blocks. They are located in

upstream of the BA detector. Each block is 15 × 15 × 30cm3. The detectors are 5

blocks high aligned so that the 30 cm dimension is perpindicular to the beam. The

primary purpose of CC06 is to further protect against photons escaping through the

beamhole. CC07 is used to block splashback from the BA. Neither CC06 or CC07

was used as a veto in this analysis.

2.3.5 Calibration of Collar Counters

The collar counters, except CC03, were calibrated using beamline muons. This data

was taken during special muon runs with the beam shutter closed. Events were

triggered by coincidence of other collar counters.
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CC03 is callibrated by cosmic ray muons using the procedure that is used for the

CsI array.

2.4 Main Barrel

The largest element of the photon veto system is the Main Barrel. It is a lead-

scintillator sandwich detector. It is divided into 32 sections forming a cylinder inclos-

ing the fiducial decay region. It is 5.5 m long and has an inner diameter of 2.0 m.

There are 45 5 mm layers of scintillator and 45 layers of lead. The lead consists of

15 layers of 1 mm thick and 30 layers of 2 mm thick plates. The detector is 14 radi-

ation lengths thick. Wavelength shifting optical fibers run parallel to the scintillator

plates for the length of the barrel. The fibers are read out on both the upstream and

downstream end by inner and outer photo-multiplier tubes.

2.4.1 Calibration

The Main Barrel was calibrated using cosmic ray muons. These events were selected

online by a coincidence of modules on the opposite side of the barrel. The path of

the cosmic ray was reconstructed using timing information. Since the Main Barrel is

read out from both ends, the time difference between the two PMT’s can be used to

determine the z position of the cosmic ray in each module. The speed of propagation

of the signal was measured by using a radioactive source.

A track can determined by minimizing the deviation of these points from the

track as shown in Figs. 2.12 and 2.13 . We introduce a correction to the timing, T0

for each module by finding the difference mean difference between the fit z position

and the z position directly from the TDC value. After determining T0, we refit the

tracks. We then can use the track length to fit the charge produced by the minimum
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ionizing particles by normalizing the charge measured by the ADC. A comparison of

the energy deposit in the Main Barrel in data and Monte Carlo is shown in Fig. 2.14.

V = 17.7
cm

ns
Speed of propagation in module (2.1)

z = a · r + b Cosmic Ray Track (2.2)

S =
1

4

∑
(zi − a · ri + b)2 Deviation from track (2.3)

T0 = 2 · (zfit − ztdc)/V Time correction for each module (2.4)

Figure 2.12: Schematic diagram of calibration procedure for the Main Barrel.
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Main Barrel

Front Barrel
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Figure 2.13: Schematic diagram of calibration cosmic muons for Front Barrel(red)
and Main Barrel(blue).
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2.5 Front Barrel

The Front Barrel is a lead-scintillator sandwich calorimeter located upstream of the

Main Barrel. It has 16 sections which are read out to inner and outer PMT’s located

upstream of the detector. The Front Barrel is 2.75 m long and has an inner diameter

of 60 cm. Each module has 59 layers of 5 mm thick scintillator and 59 layers of 1.5

mm thick lead. The detector is 26.5 radiation lengths thick. CC02 is located inside

the downstream end of the Front Barrel.

2.5.1 Calibration

The calibration of the Front Barrel uses the tracks determined by the Main Barrel.

Tracks are selected by requiring energy deposit in CC02. The charge deposit is

normalized by the path length in the Front Barrel and fit by a Landau distribution.

A comparison of the energy deposit in the Front Barrel in data and Monte Carlo is

shown in Fig. 2.15.

2.6 Barrel Charge Veto

To help veto charged particles which strike the Main Barrel, there is an inner layer

of scintillator before any lead. This layer is separately read out as the Barrel Charge

Veto.

2.6.1 Calibration

The Barrel Charge Veto is calibrated using cosmic rays. The events are selected for

vertical tracks located at the middle of the Main Barrel.
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2.7 Back-Anti

The Back-Anti (BA) is the final detector element. It is located 4.4 m downstream of

the CsI face. It consists of alternating lead-scintillator sandwich and quartz crystal

layers. The principle challenge to the BA is properly vetoing photons while avoiding

over-vetoing from beam related accidentals. This is the motivation for including the

two different detection methods in the detector. One of the most important means of

improving photon-neutron discrimination is longitudinal segmentation. The electro-

magnetic shower generated by the interaction of a photon has a smooth profile with

small fluctuations. A hadronic shower initiated by a neutron has large fluctuations.

The Back-Anti consists of 6 scintillator-lead modules and 6 quartz modules. The

scintillator-lead modules are made of six layers of 1 cm scintillator and six layers of

2.54 mm lead. Each scintillator layer is read out separately. The quartz modules

are made of 2 layers of 0.7 cm thick quartz blocks which are stacked 4 blocks. Each
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quartz block is read out by an individual PMT.

Our back-anti has 3 separate components: a cut on the shower shape, a cut on

the Cerenkov light produced by the quartz, and a timing cut. The shower shape cut

is based on the energy deposit in the scintillator layers. Events are cut if the ratio of

the energy deposit in the last scintillator modules to the total energy deposit in the

scintillator is below a maximum value.

Escintillator module 5
Etotal scintillator

< 0.9 (2.5)

Escintillator module 4 + Escintillator module 5
Etotal scintillator

< 0.95 (2.6)

Ch. 36 Ch. 43 Ch. 50 Ch. 57 Ch. 64 Ch. 71

Ch. 0 Ch. 35Ch. 56

Ch. 0

Beam

Figure 2.16: Diagram of the Back-Anti detector and the Beam Hole Charged Veto.

The Cerenkov cut is applied if there is more energy deposited in the quartz layer

than half the energy deposited by a minimum ionizing particle. The timing cut is

based on the number of scintillator channels which have hits on time. If more than

3 channels have hits in a timing window four sigma wide around the time peak and

the energy in the scintillator is above an energy threshold.
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2.7.1 Calibration

Pedestals were stable to a few percent over the course of Run I. The primary cause of

pedestal instability were discrete hardware related changes which showed significant

jumps in the pedestal values.

Calibration of the Back-Anti was done using beam line muons. The beam shutter

was closed to produce a muon beam. The trigger was either a coincidence between

the first and last scintillator layers or a coincidence between the last scintillator layer

of the BA and a BHCV channel. The energy deposit in the scintillator panels was fit

by a Landau function and measured in terms of MeV. In the quartz layers, we fit with

a Gaussian function and calibrate in terms of the energy deposit left by a minimum

ionizing particle.

Figure 18: Typical µ peaks in the quartz channels from Run I.

Figure 19: Typical µ peaks in the scintillator channels from Run II.

18

3 Muon Runs

Calibration runs were conducted by closing the beam shutter to produce a µ flux. The
trigger used was either a coincidence between the first and last scintillator layers of the BA
(in most runs) or by a coincidence between the last scintillator layer of the BA and a BHCV
channel.

The resulting ADC spectra of these µ runs were fit to calculate the true gain (in charger
per unit energy). Scintillator channels (found in both the BA and the BHCV) were fit using
a Landau function and quartz channels were fit with a Gaussian (BA only). Some examples
of these spectra can be seen Figures 17, 18, 19, 20, 21, and 22. Low range ADC has a charge
to count conversion ratio of 50 fC/ADC.

Figure 17: Typical µ peaks in the scintillator channels from Run I.

17

Figure 2.17: Typical BA muon peaks for scintillator layers (left) and quartz layers
(right). The scintillator layers are fit with a Landau function and the quartz layers
are fit with a Gaussian.
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2.8 Charge Veto

To prevent misidentification of charged particles hitting the CsI as photons, there is

the Charge Veto in front of the CsI. The Charge Veto consists of 32 curved scintillator

pieces. The secured at the outer edge of the CsI array and are bent around in front

of the CsI where they meet around the beam hole. They are supported around the

beam hole with an aluminum square tube that is attached to the CsI array structure.

The panels of the Charge Veto overlap in front of the CsI, so there are two chances

to detect the charged particle. There are four more scintillator panels on the inside

of the beam hole to protect from charged particles produced by decays in the beam

hole region.

The Charge Veto panels are read out by use of a light guide connecting them to

the PMT. Each channel is read out by one PMT. Each panel is 6 mm thick. The

total length of the panels in front of the CsI is 234 cm.

2.8.1 Calibration

The Charge Veto is calibrated by beam muons. By requiring single block clusters in

the CsI array we can identify which panel the muon passed through. One significant

issue is the length of the scintillator panels which produces significant attenuation

and position dependence in the signal.

2.9 CsI Array

The CsI array consists of 576 undoped cesium iodide crystals. There are 496 7× 7×

30cm3 crystals. We call these the KEK crystals. At the outer edge of the array we

have 56 crystals which have been cut into trapezoidal shapes which are called the
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deformed crystals. Around the beamhold are 24 5 × 5 × 50cm3 crystals which were

borrowed from the KTeV collaboration and are therefore called the KTeV crystals.

Inside the KTeV crystals is CC03. The CsI is arranged in to circular shape with a

radius of approximately 94 cm [18].

The energy resolution of a 25 KEK crystal sample was measured in a separate

beam test using a positron test beam. An example of the measurement is shown in

Fig 2.18 The value was approximately [19]
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function of the incident energy as measured
with positron beam with 25 Normal CsI crys-
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Figure 3.13: Schematic drawings of CV. Left drawing shows a detail structure of the outer
CV.

Figure 3.14 shows the light yield as a function of the distance from the PMT which was
measured with a β source[35]. The light yield increases a the far end due to the scintillator’s
wedge like shape.

3.2.4 Main barrel

Main barrel(MB) surrounded the KL decay region to detect photons from the KL decay and
other reactions. MB consisted of 32 modules as shown in Fig. 3.15. The overall size of MB was
2.76 m in outer diameter, 2.00 m in inner diameter and 5.5 m in longitudinal length.

Figure 2.18: The energy resolution of a CsI crystal as a function of incident energy
measured in the positron beam test.

2.9.1 Calibration Methods

Multiple methods were used to calibrate the CsI array. At the end of the run, we

placed an aluminum plate inside the fiducial decay region to serve as a π0 source.

With the π0 decay vertex known, we can use the reconstruct its mass and tune the

calibration to match the known value. This allows us to set an absolute energy scale
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from photons with a experimental signature similar to the physics decays. Addition-

ally, we use cosmic ray muons passing through the CsI array to measure changes in

the CsI array during the run. Muons from the beamline which are identified using

the Charged Veto can also be used for calibration. Finally, the KL → π0π0π0 decay

has enough kinematic constraints that it can be fully reconstructed with information

from only five of the final state photons.

2.9.2 Cosmic Calibration

The first calibration method is the use of cosmic ray muons. For the data in this

analysis, the cosmic rays were taken in dedicated cosmic ray runs. The trigger condi-

tions for a cosmic ray event was four hardware clusters with a deposited energy above

40 MeV. The path of the cosmic ray in the CsI array was determined by fitting a

straight line to the blocks with energy deposited in them. We required a minimum of

10 blocks along the path to have an energy deposit. The path length inside each crys-

tal was calculated from this path and used to normalize the signal from the crystal.

For each crystal path lengths between 3.5 cm and 10 cm were selected for use. After

normalizing for the path length, the energy deposit was fitted with a Landau function

and the gain calculated using the energy deposit of a minimum ionizing particle in

CsI which is 5.63 MeV/cm.

2.9.3 π0 Calibration

During a special run at the end of data taking for Run I, a 5 mm aluminum target

was placed after CC02 to produce π0’s. A diagram of the setup is shown in Fig.

2.19. With the decay vertex known, we then can use correct the energy deposit so
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the reconstructed mass matches the π0 mass.

Mγγ =
√

2E1E2(1− cos θ). (2.8)

Main Barrel

Front Barrel

CC02

CsI

Al target (5mm)

Beam line

!0 ! 2"

3398mm

Figure 2.19: Diagram of geometry of pion target run.

With the CsI array full calibrated the mass resolution for KL → π0π0π0 recon-

struction is 4.8 MeV as shown in Fig. 2.20.
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Figure 2.20: Reconstructed kaon mass distribution of good KL → π0π0π0 events.

The mass peak was fit with a Gaussian. Scale is in GeV/c2. The reconstructed mass
peak is 497.9±4.9 MeV/c2. The PDG value of the neutral kaon mass is 497.648±0.022
MeV/c2.



CHAPTER 3

DAQ SYSTEM

In this chapter, I describe the data acquisition system used in the E391a experiment.

3.1 Overview

All of the detectors in the E391a experiment use photo-multiplier tubes (PMT’s) to

change light that they produce into electrical signals. The signals that the PMT’s

produce are sent to Amplifier/Discrimination modules. These modules take the input

from eight detector channels and produce individual analog signals for each channel,

an analog sum signal of the eight channels, and an individual logic signal for the

TDC. The individual analog signals are transferred to the ADC by 90 m long coaxial

cables. The sum signal are passed to the trigger logic by 30 m long coaxial cables.

The logic signal is transported by a 30 m twisted pair cable and has an additional

100 ns logic delay.

3.2 Triggering

3.2.1 Hardware Cluster

The CsI array is divided in 72 different 8 block regions called the hardware clusters.

These are used to define the online triggering. The analog signals from the eight

CsI blocks in each cluster are summed in the Amp-Discriminator modules and then

converted to a logic pulse with a threshold of 60 MeV. The logic pulses from all 72

hardware clusters are then summed. Physics data taking was done requiring 2 or

41
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more hardware clusters to pass the threshold. The division of the CsI array into

hardware clusters is shown in Fig 3.1.
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Figure 3.1: Layout of CsI Hardware Clusters.

3.2.2 Online Vetoes

To reduce the amount of data written to disk, loose vetoes were applied during data

taking to remove obvious background events. The analog signals of the different
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Detector Online Veto Threshold (MeV)
CC02(Sum) 25
CC03(Sum) 15
CC04(Sum) 45
CC05(Sum) 25
Main Barrel(Downstream) 15
Front Barrel 30
Charge Veto 1.5

Table 3.1: Online veto threshold values converted to energy values.

photon vetoes were summed by Amp-Discriminator modules and converted into logic

pulses if they passed the energy threshold. The signals from CC02, CC03, CC04,

CC05, the downstream signals of the Main Barrel, the Front Barrel, and the Charge

Veto are summed individually. Additionally to reduce over vetoing due to accidentals,

the timing of these veto signals were required to be within a timing window individ-

ually set for each detector. The online veto threshold for each detector element are

shown in Table 3.1.

3.2.3 Physics Trigger

The physics trigger for E391a was the requirement that two or more of the hardware

clusters passed the energy threshold and none of the vetoes passed their threshold.

For running during the one week period this gave us a trigger rate of approximately

800 events per 2 second beam spill with a live time ratio of 78%.

3.2.4 Accidental Triggers

The E391a beam is dominated by neutrons with a neutron to kaon ratio of approx-

imately 60 to 1. This means the majority of activity in our detector is unrelated to

kaon decays. This activity is occurring at all times, so it overlays the kaon decays we
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are interested in. To properly understand our backgrounds this activity must be in-

cluded in our simulations, but it is difficult to correctly reproduce low energy neutron

activity with current Monte Carlo software.

Several different triggers were employed to provide an unbiased sampling of the

accidental activity. The most useful trigger was the Target Monitor trigger. The

Target Monitor is a counter telescope near the kaon production target. This trigger

is therefore proportional to the beam intensity.

3.2.5 Calibration & Pedestal Triggers

Additional triggers were used for monitoring the detectors and electronics. The CsI

gain was monitored by a xenon lamp. The light output was fed to the CsI crystals

by quartz fibers. The lamp flashed at a rate of 4 times a second.

Other detector components were flashed by a LED light system which operated

on the same clock timing as the xenon lamp.

3.3 Timing

The timing of energy deposit in each detector is measured using a TDC system.

The system uses a common start and individual stop. The timing window is opened

by the trigger signal and closed by the individual stop logic signal produced by the

Amp/Disc module.

3.3.1 Calibration

It is necessary to correctly determine the relative timing offsets of the different detec-

tor elements to use timing information in the analysis. To determine the timing of a

signal we must measure the delays between the signal being generated and the TDC.
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Figure 3.2: Signal propagation between PMT and TDC.

The timing is calibrated in stages, first the relative timings within the CsI channels

are adjusted. Once the CsI timing is calibrated the other detectors timing is adjusted

to match.

The calibration of the CsI timing can be divided into two parts, first the de-

lays between the particle striking the CsI and the input of the Amp/Disc module

and secondly between the input of the module and the TDC.The delay between the

Amp/Disc module and the TDC was measured using a pulser on each channel. The

delay from particle impact to the Amp/Disc module is fit in stages using three pa-

rameters for each channel: the propagation time from the photo-cathode of the PMT

to the input of the Amp/Disc module, a correction factor the flight time of the cosmic

ray muon, and a correction factor for the travel time of the scintillation light in the

CsI. The travel time inside the CsI block was fit using tracks which start and end

inside the calorimeter, corresponding to muons which strike the face of one CsI block

and exit out the opposite face of another. The track can then be reconstructed in

all three-dimensions and the timing difference between the crystals can be factored

out. The distribution of timing difference between the six gammas of KL → π0π0π0

events was found to have a σ of 0.51 ns once the calibration was completed [18], as

shown in Fig 3.3.
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in situ calibration of their gains using cosmic-rays
and punch-through muons at the KL

0 beam area.
Two gain constants obtained by both methods
differ by only 2% and the ratio has a narrow
distribution with a s of 2.3%. The hit timing of
each crystal was also calibrated by using cosmic
rays. The absolute values of the gain constants
were further calibrated using p0’s produced by
neutron interactions.

Using these calibration constants we recon-
structed K0

L ! p0p0p0 decays and obtained a KL
0

mass resolution of s ¼ 4:3MeV=c2 and a timing
resolution of 0.51 ns.
Since a large number of K0

L ! p0p0p0 decay
samples were collected during the physics run we
can use these data for the re-calibration of the CsI
calorimeter in order to refine the resolutions
further. The details of the re-calibration will be
reported later.
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CHAPTER 4

MONTE CARLO SIMULATION

We used a GEANT 3 [20] based Monte Carlo simulation to help understand our data.

The Monte Carlo is used to calculate acceptance for the signal and normalization

modes and to help identify our background sources. It is insufficient in statistics and

accuracy to be used to predict the background to our signal.

4.1 Event Generation

Kaons were generated with a momentum spectrum at the end of the beamline which

is the position of the last collimator, C6. They were propagated forward to a decay

point.

The KL → π0π0 decay has no form factors and is generated with a flat phase

space. The KL → π0π0π0 decay has a matrix element in the decay. However, the

contribution is small (< 1%) and is not included in our Monte Carlo generation. The

KL → π0π0νν̄ decay has a form factor as described in Chapter 2. Simulations were

performed with and without this factor. The KL → π0π0P decay was generated

without a matrix element with a flat phase space. Events with a range of masses

were generated.

4.2 Samples

The sample sizes for the different decay modes are summarized in Table 4.1. In order

to increase the speed of the simulation we did not fully process all events.

For comparison to data the KL → π0π0 and KL → π0π0π0 samples are used with

events with four clusters in the CsI array. The KL → π0π0 sample is normalized
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Mode Sample Size Data Equivalent

KL → π0π0 1.36× 107 KL decays in fiducial region 870%

KL → π0π0π0 1.36× 108 KL decays in fiducial region 46%

Core Neutron 7.5× 109 at C6 ≈ 10%

KL → π0π0νν̄ 1.45× 106 KL decays in fiducial region NA

KL → π0π0P 2.0× 105 KL decays in fiducial region NA
for each mass value

Table 4.1: Monte Carlo samples and their equivalent data size.

to data through the KL → π0π0 mass peak. The KL → π0π0π0 sample is then

normalized to KL → π0π0 through the branching ratio.

4.2.1 Decay Region

The main background modes of KL → π0π0 and KL → π0π0π0 were allowed to

propagate and decay according to the kaon lifetime after their generation at C6 (-

192.5 cm). The fraction of kaons which decayed in the fiducial region (300 to 500 cm)

was 2.72%.

For the signal mode samples we controlled where the kaon decayed. Events were

generated with kaons decaying in the region between 200 cm to 600 cm. The fraction

of kaons which decayed in the fiducial region (300 to 500 cm) was 50.0%

4.2.2 Energy Cut-offs

To speed processing time loose vetoes were applied during the event generation stage.

When energy deposited in a detector element surpassed these limits (see Table 4.2),

the further processing of the event was halted.
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Detector Element Simulation Cut-Off

CC02 50 MeV
CC03 50 MeV
CC04 50 MeV
CC05 50 MeV
CC06 50 MeV
CC07 50 MeV
Main Barrel 50 MeV
Front Barrel 50 MeV
Charge Veto 2 MeV

Table 4.2: Simulation cut-off values for individual detectors. If the energy deposit in
a detector element exceeds this value processing of the event is halted.

4.3 Accidental Overlay

The beam related background is nearly impossible to simulate and so we must take

information from the data to properly account for it. We use the accidental target

monitor trigger to collect a sample of events which is representative of the activity in

the detector during running.

Then a randomly selected accidental event is overlaid on top of one Monte Carlo

event. This is done by adding the energies on a channel by channel basis. The

channel’s timing is produced by selecting the earliest signal between the Monte Carlo

and accidental overlay.

4.4 Data and Monte Carlo Comparison

The Monte Carlo reproduces well most aspects of the E391a data. There are inconsis-

tencies in the timing and neutron interactions. The primary indicator that our Monte

Carlo is imperfect is a significant discrepancy between the low mass KL → π0π0π0

peak in data and Monte Carlo as shown in Fig 4.1. The Monte Carlo predicts a

higher level of background than the data. This results in a discrepancy in the vertex
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distribution as well, due to the number KL → π0π0π0 events having a strong position

dependance. We handled this problem by varying the normalization of KL → π0π0π0

relative to that of KL → π0π0. The improvement can be seen in Fig 4.2.

Reconstructed Kaon Mass

Mass (GeV)

10

10
2

10
3

10
4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.1: Reconstructed invariant mass for data and Monte Carlo for 4γ events.

Monte Carlo is normalized to data using the 2π0 mass peak. It includes KL → π0π0π0

and KL → π0π0 events, which are normalized relative to each other by branching
ratio. The accidental overlay is applied.

After varying the normalization, Monte Carlo well reproduces the kinematic vari-

ables associated with the kaon beam. A sample of the comparisons is shown in Fig.

4.3. Comparison of Monte Carlo and data energy spectrums for individual detector

elements is shown in Chapter 3 in the sections for each detector.
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CHAPTER 5

RECONSTRUCTION

In this chapter we describe the procedure for going from the signals in the detector to

a reconstructed kaon. We also describe the cuts applied to the reconstructed gammas

and the kaon reconstruction.

5.1 Clustering

The first stage in the reconstruction is finding the photons which struck the CsI

array. We call this process clustering. We find clusters of blocks which all have

energy deposited by single photons in them using the following algorithm. The first

step is producing a list of blocks which are a local maximum of energy deposit. From

these “seed” blocks we build clusters.

First, we check for a minimum energy threshold of 5 MeV. Then, the horizontally

and vertically adjacent blocks are checked if they have energy above 3 MeV. If they

do, they are added to the cluster.The process is then repeated for the blocks which

have been added to the cluster.

Local
 Maximum

Additional Blocks 
with energy 

Figure 5.1: Diagram of clustering procedure.
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5.1.1 Cluster Position

The first iteration of the finding the cluster position is to calculate the center of energy

position:

xCOE =

(Nblocks∑
i=1

xiEi

)
/Ecluster. (5.1)

5.1.2 Cluster Energy Recalculation

The KEK CsI crystals are 30 cm long which corresponds to 16.2 radiation lengths.

This does not fully contain all the electromagnetic showers that are produced. We

therefore apply a correction to the raw energy calculated by summing the energy

deposit in each crystal. The energy leak through was studied using Monte Carlo data

and parameterized:

leak = 0.024 +
1.664× 10−2√

Edeposit
(5.2)

Ecorrected = (1 + leak)× Edeposit × 1.01. (5.3)

5.1.3 Cluster Timing

The timing of the clusters is determined by the TDC value of the peak block in each

cluster. The timing for the clusters, as for all detectors, is relative to the time of the

earliest cluster. The calibration of the timing for individual blocks is described in

Sect. 3.3.1.
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5.2 π0 Reconstruction

The second step in reconstructing an event is the determination of the decay vertex.

The photons we are interested in are the daughter particles of π0’s which are in turn

daughter particles of the KL. All of the decays we are interested in have π0’s which

decay into two photons with a branching fraction of (98.798± 0.032)% [? ].

Making the assumption that the photons we observe in the CsI come from the

decay of a π0, we can reconstruct the decay vertex of the π0. We must assume that

the KL decayed at the beam center, because we are missing energy in the CsI, due to

neutrinos or missing photons, so the center of energy in the CsI does not correspond to

the decay vertex. This is called the pencil beam assumption. Making this assumption

introduces spurious transverse momentum into our reconstruction, but with missing

energy in our signal modes, we have no way of calculating the x and y position. The

z vertex can be calculated using the photons’ energy and position along with the

assumption that they both came from the same π0.

5.2.1 Z Vertex

By using energy and momentum conservation we can calculate the opening angle

between the two photons:

p2
π0 = (pγ1 + pγ2)

2, (5.4)

E2
π0 −m2

π0 = p2
γ1 + p2

γ2 + 2pγ1 · pγ2, (5.5)

E2
γ1 + E2

γ2 + 2Eγ1Eγ2 −m2
π0 = E2

γ1 + E2
γ2 + 2Eγ1Eγ2 cos θ, (5.6)

m2
π0 = 2Eγ1Eγ2(1− cos θ), (5.7)

cos θ = 1−
m2

π0

2Eγ1Eγ2
. (5.8)
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It is important to note that in many experiments using this technique it is possible

r12
r2

r1 d1

d2

d (0,0)

Decay
Vertex

CsI Face

Figure 5.2: Reconstruction of pion decay vertex.

to approximate the cos θ using a small angle approximation. In our case this is not

possible due to the relatively low energy of π0’s and the closeness of the fiducial decay

region to the CsI face which can produce separation angles of nearly 90◦.

Using the opening angle, we can relate the separation of the photons, r12, to their

path lengths, d1 and d2:

r2
12 = d2

1 + d2
2 − 2d1d2 cos θ. (5.9)

The path lengths of the photons are simply:

d1 =
√

r2
1 + d2, d2 =

√
r2
2 + d2. (5.10)

We relate the photon separations to their x and y coordinates on the CsI face:

r2
1 + r2

2 − r2
12 = 2(x1x2 + y1y2). (5.11)
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Substituting d1, d2, and r12 into Eqn 5.9, gives us:

(r2
1 + d2)(r2

2 + d2) cos2 θ = (d2 +
r2
1 + r2

2 − r2
12

2
)2. (5.12)

Rearranging the equation we find:

d4(1− cos2 θ)− d2(r2
12 − (r2

1 + r2
2)(1− cos2 θ))+

(x1x2 + y1y2)
2 − r2

1r
2
2 cos2 θ = 0.

(5.13)

In order to solve this expression, we first simplify it by introducing several new vari-

ables:

a = (1− cos θ2), (5.14)

b = r2
12 − (r2

1 + r2
2)(1− cos2 θ), (5.15)

c = (x1x2 + y1y2)
2 − r2

1r
2
2 cos2 θ, (5.16)

a · d4 − b · d2 + c = 0. (5.17)

This is simply a quadratic equation for the square of the distance. Solving for the

square of the distance we find:

d2 =
b±

√
b2 − 4ac

2a
. (5.18)

This leads us to as many as four different values of the distance between the kaon decay

vertex and CsI calorimeter. The negative solutions of
√

d2 correspond to vertices

downstream of the CsI array, these we ignore. Only one of the solutions of the d2

equation is consistent with the pion mass we assumed at the beginning. We can check

which one is correct by using the value of d, the photons’ hit position, and energy
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to calculate the photons’ 4-momentum. Using the 4-momentum we can calculate

the invariant mass of the pion. The calculated mass of the correct solution will be

very close to the true π0 momentum and the incorrect solution will typically be very

different. In some cases where the value of b2 − 4ac is small the recalcuated mass

will not be that different so we must carry both possible solutions into the pairing

algorithm.

5.2.2 Selection of Pairing

There are three possible ways to assign four photons to two pions and fifteen ways six

photons can be assigned to 3 pions. We have an additional possible ambiguity from

the calculation of the decay vertex which could increase the number of solutions to 12

for the four photon case and 120 for six photons. In general if the photons are paired

incorrectly the decay vertices of the different pions will not match. To quantify this

we created a χ2 variable for the differences in vertex position:

χ2 =

Nπ0∑
i=1

(zavg − zi)
2

σ2
i

. (5.19)

We select the pairing with the smallest χ2. Additionally, we apply cuts on the χ2

of the best pairing and the second best pairing. Now, knowing the decay vertex of the

π0’s, we can use the cluster position and energy to determine the photon momentum.

5.2.3 Transverse Momentum

An important variable for identifying the event type is the transverse momentum of

the π0-π0 system:

PT =
√

p2
x + p2

y. (5.20)
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The PT squared is a relativistic invariant. A perfectly reconstructed KL → π0π0

event should have nearly zero PT corresponding to the angular spread of the beam.

However, by making our pencil beam assumption we introduce additional PT into

our reconstruction.

5.3 Normalization Modes

In order to know what limit we can set for the decay modes of interest, we must first

determine the number of KL’s that passed through our detector in the experiment.

To do this we measured two well understand kaon decays, KL → π0π0π0 and KL →

π0π0.

5.3.1 2π0 Mode

The decay KL → π0π0 is extremely important as a normalization mode, because it

shares so many of the characteristics of the KL → π0π0νν̄ mode. Both of the decays

have four photons in the final state and the same reconstruction algorithm can be

applied.

The same reconstruction routine can be applied to both KL → π0π0 and KL →

π0π0νν̄, and so we do. For the purposes of normalization we define a 2π0 box in

the PT -mass plane. The box is defined as 473MeV/c2 < M < 523MeV/c2 and

PT < 80MeV/c. The distribution is shown in Fig 5.3.

5.3.2 3π0 Mode

As a cross check of our flux calculation with KL → π0π0, we also determine the

flux using the decay KL → π0π0π0. With 6 photons in the CsI array there are no

significant background modes to the decay.
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Figure 5.3: Distribution of Monte Carlo KL → π0π0 events in the PT -Mass plane.

5.4 Signal Modes

5.4.1 KL → π0π0νν̄

The decay KL → π0π0νν̄ has a signature of four photons in the CsI array which

reconstruct to two pions, with a high PT and a low invariant mass. The maximum

PT for this mode is 209 MeV/c. The kinematically allowed region forms a triangle

in the PT -mass plane. The minimum invariant mass is 2mπ0 . The distribution is

shown in Fig 5.4.

5.4.2 KL → π0π0P

The signature for KL → π0π0P is very similar to that of KL → π0π0νν̄. The bounds

in the PT -mass plane depend on the mass of the P . Since the mass of the P is

not predicted by theory, we must run simulations for a range of P masses. Our

acceptance decreases as the mass of the P increases, because the available energy
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to go into the transverse motion of the daughter particles decreases. With lower

allowable PT , a larger fraction of the signal events are in the same PT -mass region

as the KL → π0π0π0 background. A selection of distributions for differing masses

are shown in Fig 5.4.

5.4.3 Signal Box

Poor reconstructions often manifest themselves as events with a z vertex close to the

CsI face and with a high PT . Additionally, the vacuum membrane hangs into the

beam line at the location of the Charge Veto at 550 cm. We therefore cut events

close to the CsI. Additionally, CC02 and the Front Barrel strongly restrict the decay

volume that we can see. Therefore events which are reconstructed upstream, outside

of our fiducial region, are also cut. We define the fiducial decay region as between

300 and 500 cm.

As discussed below the KL → π0π0π0 background sets a lower bound for the

PT at which we can achieve a high signal to background ratio. We set the lower

bound for allowed PT at 100MeV/c2. The maximum PT which these decays produce

corresponds to the mass difference between the KL and 2π0’s. We set the upper

bound of the signal box at 200MeV/c2.

5.5 Cut Philosophy

The primary consideration for the tuning of the individual cuts was maximizing the

signal-to-noise ratio for that cut. This was done by comparing the effect of the cut

on the KL → π0π0π0 Low Mass-Low PT region and the KL → π0π0 signal region.

Acceptance loss from the cuts was a secondary factor which we studied using both the

KL → π0π0 signal region and the KL → π0π0νν̄ Monte Carlo. The signal-to-noise
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ratios and acceptance losses from the cuts are shown in Table 5.1.

5.6 Veto Cuts

Since the primary background is KL → π0π0π0 it is of primary importance to detect

all photons produced by the decay of the kaon. For this analysis we applied the

following photon vetoes: CC02, CC03, CC05, Front Barrel, Main Barrel, and Back-

Anti. There are no major charged backgrounds to the decay modes we are interested

in, so we only cut on the charged veto systems at the online level. More detailed

descriptions of the veto cuts are found in Sections 2.3 to 2.9. The values of the cuts,

the acceptance losses, and signal-to-noise ratios of the cuts are shown in Table 5.1.

5.7 Gamma Quality Cuts

A large source of “missing” photons is cluster fusion in the CsI array. This occurs

when two photons strike the array close together and our clustering routine does not

seperate them. Cuts on a variety of variables associated with the cluster can be used

to identify these fusion events. Additionally, the neutron background is characterized

by photons being generated close to the CsI face which produces photons striking the

CsI at high angles which have properties distinct from the those produced by kaon

decays in the fiducial region.

5.7.1 Neural Network for Fusion Identification

We apply a neural network to the cluster which has been trained to identify photon

fusion. A neural network is a flexible algorithm for the separation of events into

different classes. The inputs are multiplied by weights and summed. A function σ is
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then applied to produce the inputs for each of the ”hidden” layers. This process is

repeated to produce the output from the hidden layer. A schematic of the connections

is shown in Fig 5.5:

Input Layer Hidden Layer Output Layer

...

......

...
...

x1

x2

xn

y1

y2

ym

z

Figure 5.5: Schematic of neural network.

yj = σ(
n∑

k=1

Wjkxk + Bj), (5.21)

z = σ(
m∑

k=1

Wkxk). (5.22)

Here σ is a sigmoid function. A sigmoid function smoothly maps (− inf, inf) onto

(0,1), is monotonic, and is linear when |x| ≈ 0. For our neural net, we use the

function:

σ(x) =
1

1 + e−x . (5.23)

This is plotted in Fig 5.6.

Our neural network for fusion identification has 12 inputs, 10 hidden units, and 1
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Figure 5.6: The sigmoid function σ(x) = 1
1+e−x .

output. The inputs are the energies deposited in the nine blocks around the center of

the cluster normalized by the total energy, the cluster position on the CsI face, and

its azimuthal angle.

5.7.2 Training the Neural Network

Before the neural network can be used, the weights must be “trained.” This is equiv-

alent to fitting a non-linear function. The algorithm which we used is called “back-

propagation.” In back-propagation the errors of the function are first calculated for

the last layer and then propagated backwards to the earlier layers. Using these errors

a non-linear fitting procedure can be applied.

The neural network for fusion identification was trained a combination of Monte

Carlo and real data. To properly train the network a sample of photon clusters with

fusion and without is necessary. For our sample of clusters without fusion we used

data from our 6 gamma sample with clean KL → π0π0π0 reconstructions. The fusion

sample is taken from our Monte Carlo, where we required five clusters identified when

six clusters hit the CsI. A comparison of the output for data and Monte Carlo is shown
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in Fig 5.7.
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Figure 5.7: Comparison for Fusion Neural Net output for data and Monte Carlo.
Data is represented by the black dots and Monte Carlo by the red line. Samples are
normalized by the maximum bin. Lower plot is ratio of Monte Carlo to data.

5.7.3 Energy Cut

We cut events which have reconstructed photons below a minimum energy. Low

energy photon events can be produced by either accidental activity or from KL →

π0π0π0 events which tend to have lower photon energies than many of our signal

modes. We cut any event with a gamma energy of less than 200 MeV.

5.7.4 Gamma Fiducial Cut

The inner and outer edges of our CsI array suffer a variety of problems. The inner

edge, close to the beam, has significant level of accidental activity. The outer edge

consists of CsI blocks which have been cut. They both face the prospect of photon

showers which have not been completely contained within the calorimeter. Therefore,
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we require all the reconstructed photons to be within a fiducial region. We require the

photons to be outside a 35 cm by 35 cm box around the beamhole. This corresponds

to being outside the inner layer of 7× 7 cm crystals. We also require the photons be

inside a 90 cm circle from the center of the beamline.

5.7.5 Gamma EDI

We cut on the spread of photon energies in the event. This cut is called the gamma

energy dispersion index. Events with an E.D.I. of less than 0.8 are cut:

Gamma E.D.I. =
1

N

√∑
(Ei − Em)2. (5.24)

Here, Ei is the energy of one of the reconstructed photons and Em is the mean energy

of the reconstructed photons. A comparison of the Gamma E.D.I. between data and

Monte Carlo is shown in Fig 5.8.

5.7.6 Gamma TDI

We cut on the spread of photon cluster timing. This cut is the called the gamma

timing dispersion index. Events with a T.D.I. of greater than 2.0 are cut:

Gamma T.D.I. =
1

N

√∑
(Ti − Tm)2. (5.25)

Here, Ti is the timing of one of the reconstructed photons and tm is the mean timing

of the reconstructed photons. A comparison of the Gamma T.D.I. between data and

Monte Carlo is shown in Fig 5.8. Our Monte Carlo does not well reproduce timing at

this point. Therefore we cannot use the Monte Carlo to study acceptance loss from

this cut.
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Figure 5.8: Gamma EDI. Data is represented by the black dots and Monte Carlo by
the red line. Samples are normalized by the maximum bin. Lower plot is ratio of
Monte Carlo to data.
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Figure 5.9: Gamma TDI. Data is represented by the black dots and Monte Carlo by
the red line. Samples are normalized by the maximum bin. Lower plot is ratio of
Monte Carlo to data.
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5.7.7 Gamma R.M.S.

We construct a cut on the shape of the photon cluster:

Gamma R.M.S. =

√∑
Ei × r2

i∑
Ei

. (5.26)

Here, Ei is the energy of an individual block in the cluster and ri is distance between

the center of that block and the reconstructed cluster position. We cut on the R.M.S.

with different values depending on the number of blocks in the cluster. The cut values

are shown in Fig 5.10. A comparison between data and Monte Carlo values of the

R.M.S. is shown in Fig 5.11.
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Figure 5.10: Cut point for Gamma R.M.S. as a function of cluster size in CsI blocks.

5.7.8 Gamma Energy Ratio

An additional cut on the quality of the gamma is a cut on the ratio of the three

highest energy blocks to the total cluster energy. We apply the cut when a cluster

has an energy ratio of less than 0.8:

Gamma Energy Ratio =
E1 + E2 + E3∑

Ei
. (5.27)
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Figure 5.11: Gamma RMS. Data is represented by the black dots and Monte Carlo
by the red line. Samples are normalized by the maximum bin. Lower plot is ratio of
Monte Carlo to data.

Here, E1 to E3 are the three highest energy blocks and Ei are the energies of each

individual block. A comparison of this variable between data and Monte Carlo is

shown in Fig 5.12.

5.8 Reconstruction Quality Vetoes

It is important to test that the reconstruction of the kaon has been done correctly.

The most important figure of merit for the quality of the reconstruction is the χ2 of

the π0 vertices, Eqn 5.19. We select the pairing which produces the lowest χ2 value

as the pairing which we reconstruct.

5.8.1 Best χ2

If the χ2 of the best pairing is large then that indicates that the reconstruction is

a poor one. We therefore require the χ2 of the best pairing to be less than 0.5. A
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Figure 5.12: Energy ratio.

comparison between data and Monte Carlo for this variable is shown in Fig 5.13.

5.8.2 Second Best χ2

Another effective cut is to look at the χ2 of the second best pairing. If it is small

then that can indicate that the pairing that we categorized as the best because it had

a low χ2 was in fact not the best. We therefore require the second best χ2 pairing to

have a χ2 value. We set the cut point at 50. A comparison between data and Monte

Carlo for this variable is shown in Fig 5.14.

5.9 Acceptance and Flux

The acceptance for the kaon decay modes was primarily calculated using the Monte

Carlo simulation. The acceptance loss for individual cuts is shown in Table 5.1. The

acceptance of signal events of the various signal modes as a fraction of decays in the

fiducial region is shown in Table 5.3.
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Figure 5.13: Comparison between data and Monte Carlo of χ2 of vertex reconstruc-

tion. Plots are normalized by KL → π0π0 signal box. Monte Carlo consists of
KL → π0π0 and KL → π0π0π0 events.
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Figure 5.14: Comparison between data and Monte Carlo of χ2 of the second best

π0 pairing vertex reconstruction. Plots are normalized by KL → π0π0 signal box.
Monte Carlo consists of KL → π0π0 and KL → π0π0π0 events.
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5.9.1 Non-simulated Cuts

The Monte Carlo did not fully reproduce the behavior of several of the cuts. The

primary cuts where this is the case are cuts which involve the timing behavior of

the detector and the BA. These cuts are the BA veto, the CsI veto, the Gamma

T.D.I., and the fusion neural net cut. We determine the effect of these cuts on

acceptance from the data by comparing the number of KL → π0π0 signal events

with and without these cuts. This acceptance loss is then applied to the signal mode

acceptance calculated with the simulated cuts. Table 5.2 shows the non-simulated

acceptance loss.

Figure 5.15: KL → π0π0 acceptance loss from individual vetoes.

5.9.2 Flux

The flux of kaons which decayed in the fiducial region was calculated using both

KL → π0π0 and KL → π0π0π0. After calculating the acceptance of these two

modes, the number of observed events can be used to determine the flux. The values

are shown in Table 5.2. We use both modes as a check on our acceptance calculations.
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Acceptance Loss
Cut Cut 2π0 2π0νν̄ Signal to

Value Noise Ratio
Data MC MC Data MC

Photon Vetoes
CC02 1 MeV (2.6± 0.2)% (2.4± 0.1)% (2.1± 0.1)% 1.29 1.90
CC03 2.5 MeV (2.6± 0.2)% (2.2± 0.1)% (2.1± 0.1)% 1.14 1.48
CC05 4 MeV (1.3± 0.1)% (1.3± 0.1)% (0.7± 0.1)% 1.06 0.90
CsI Veto* 30 MeV (33.8± 2.5)% (35.3± 0.7)% (29.2± 3.5)% 1.73 1.67
Main Barrel 2 MeV (9.5± 0.8)% (8.9± 0.2)% (6.5± 0.8)% 1.27 1.76
Front Barrel 4 MeV (1.3± 0.1)% (0.0± 0.0)% (0.0± 0.0)% 7.43 201.2
Back-Anti* (41.3± 3.0)% NA NA 1.40 NA
Gamma Quality
Gamma E.D.I. 0.8 (9.2± 0.7)% (12.9± 0.3)% (11.7± 1.4)% 1.29 1.54
Gamma T.D.I. * 2.0 (17.8± 1.4)% NA NA 1.10 NA
Fusion Neural 0.75 (60.3± 4.1)% (56.9± 1.0)% (49.1± 5.8)% 1.32 1.03
Net *
Gamma 17.5 and (25.3± 1.9)% (27.8± 0.5)% (21.4± 2.3)% 1.10 0.93
Fiducial 90.0 cm
Gamma Energy 0.8 (3.6± 0.3)% (3.9± 0.1)% (7.1± 0.8)% 1.56 1.51
Ratio
Gamma RMS 6. (15.2± 1.2)% (10.1± 0.2)% (10.1± 1.1)% 1.15 1.02
Reconstruction
Quality
Best χ2 0.5 (59.3± 4.1)% (57.5± 1.0)% (51.4± 6.1)% 1.19 1.18
2nd Best χ2 50.0 (47.5± 3.4)% (44.3± 0.8)% (57.7± 6.8)% 1.24 1.36

Table 5.1: Acceptance loss and signal to noise ratio for individual veto cuts. Signal

to noise ratio of the cuts is calculated as the factor by which the ratio of KL → π0π0

signal events to events in the Low PT Low Mass region changes. * Cuts with an
asterisk are excluded from the flux calculation and their acceptance loss is determined
from KL → π0π0 data.
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Normalization Acceptance Acceptance Loss Flux
Mode MC Non-Simulated Cuts

KL → π0π0 (1.49± 0.01)× 10−3 (85.5± 0.9)% (1.54± 0.04)× 109

KL → π0π0π0 (1.31± 0.03)× 10−5 (89.4± 0.5)% (1.57± 0.04)× 109

Table 5.2: Flux calculation and non-simulated cut acceptance loss.

The calculated flux from the two modes agrees within statistical error. We use the

central value of KL → π0π0 for our calculations.

The acceptance of the signal mode is calculated primarily from the signal Monte

Carlo. The acceptance loss for cuts which are not simulated are calculated from

the acceptance loss in the data KL → π0π0 signal loss. The cuts which we derive

the acceptance loss from data because they are not simulated are the back anti veto

and the gamma T.D.I. cut. Additionally the CsI veto and the fusion neural network

show significant discrepancies between data and Monte Carlo and produce significant

differences in the flux between KL → π0π0 and KL → π0π0π0. These cuts are

removed when we are calculating the flux. With those four cuts removed, the flux

calculated by each of these two modes agree with statistical error.

5.9.3 Signal Mode Acceptance

The acceptances for our various signal modes are calculated using Monte Carlo. The

non-simulated cuts and those which have significant data-Monte Carlo discrepancies

were removed and their effect on acceptance was determined by the use of the KL →

π0π0 data. We use a flat phase space for the KL → π0π0νν̄ decays for this acceptance

calculation. The acceptance for KL → π0π0P depends on the mass of the sgoldstino.

This dependance is shown in Table 5.3 and Fig 5.16.

The acceptance for the KL → π0π0P is significantly higher than that for KL →

π0π0νν̄. This is due to higher PT distribution, because there is only one unobservable
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Signal Acceptance Acceptance Final Single
Loss

Mode MC Non-Simulated Acceptance Event
Cuts Sensitivity

KL → π0π0νν̄ (3.68± 0.16) (14.5± 0.9)% (5.33± 0.23) (1.21± 0.06)

×10−4 ×10−5 ×10−5

KL → π0π0νν̄ (3.79± 0.20) (14.5± 0.9)% (5.50± 0.28) (1.18± 0.07)

Form Factor ×10−4 ×10−5 ×10−5

KL → π0π0P
MP = 25MeV (1.55± 0.03) (14.5± 0.9)% (2.24± 0.04) (2.89± 0.06)

×10−2 ×10−3 ×10−7

MP = 50MeV (1.48± 0.03) (14.5± 0.9)% (2.14± 0.04) (3.02± 0.09)

×10−2 ×10−3 ×10−7

MP = 75MeV (1.54± 0.03) (14.5± 0.9)% (2.24± 0.04) (2.89± 0.09)

×10−2 ×10−3 ×10−7

MP = 100MeV (1.46± 0.03) (14.5± 0.9)% (2.11± 0.04) (3.06± 0.09)

×10−2 ×10−3 ×10−7

MP = 125MeV (1.29± 0.03) (14.5± 0.9)% (1.86± 0.05) (3.47± 0.11)

×10−2 ×10−3 ×10−7

MP = 150MeV (9.82± 0.22) (14.5± 0.9)% (1.42± 0.03) (4.55± 0.15)

×10−3 ×10−3 ×10−7

MP = 175MeV (4.96± 0.16) (14.5± 0.9)% (7.19± 0.23) (9.00± 0.35)

×10−3 ×10−4 ×10−7

MP = 200MeV (9.05± 0.67) (14.5± 0.9)% (1.31± 0.10) (4.93± 0.38)

×10−4 ×10−4 ×10−6

Table 5.3: Acceptance and single event sensitivity for the various signal modes.
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particle rather than two which can cancel each others contributions to PT .

Figure 5.16: Single event sensitivity to KL → π0π0P as function of sgoldstino mass.



CHAPTER 6

BIFURCATION ANALYSIS TECHNIQUE

In this chapter I describe the bifurcation analysis procedure for background prediction

that I use in the next chapter. The goal of the bifurcation analysis is to predict

the level of background in the signal region using data without opening the signal

box. I use the term cut to refer to a specific selection criteria. An event which

passes a cut is selected an event which fails is thrown out. The procedure use the

application of inverse cuts to properly measure the veto power of different sets of

cuts while not opening the signal box. This technique was first developed in the

stopped K experiments E787 and E949 at Brookhaven [21]. I begin with a derivation

of the bifurcation analysis in the case of one background source and uncorrelated

cuts, which is the technique used at the Brookhaven experiments. I then extend this

to two background sources and a simple model of correlation between cuts. I cover

the various derivations with a fair amount of algebraic detail.

6.1 One Background Case

I begin discussing this method in the case of a single background source. Here a

collection of setup cuts have been applied which eliminate all other sources of back-

ground. I use the term cut to refer to a specific selection criteria. An event that

passes a cut is selected and an event which fails a cut is thrown out. I then want to

know the amount of background in the signal region when I apply the Cuts A and B.

The number of events we observe will be determined by the number of events before

applying the cuts A and B (after applying the setup cuts), N0, and the cut survival

probability (CSP):

79
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Nbkg = N0P (AB). (6.1)

If events are considered to lie in a multi-dimensional space with a dimension

corresponding to every variable on which can be used to make a cut. The set of

cuts defines a multidimensional signal box which should be kept blinded. If two cuts

show no correlation in the events that they cut, this implies that these two cuts are

orthogonal in this space. The CSP can then be decomposed into P (AB) = P (A)P (B).
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Figure 6.1: Schematic of background distribution in the cut space.

Nbkg = N0P (A)P (B) (6.2)

This can be expanded into:

Nbkg =
N2

0P (A)P (B)P (Ā)P (B̄)

N0P (Ā)P (B̄)
. (6.3)

Here Ā and B̄ are the inverses of cuts A and B, events which pass cut A fail cut Ā.

Then this can be calculated from data based on the number of observed events in the
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signal box under the different cut conditions:

NAB̄ = N0P (A)P (B̄), (6.4)

NĀB = N0P (B)P (Ā), (6.5)

NĀB̄ = N0P (Ā)P (B̄). (6.6)

Where NAB̄ is the number of background events observed with the application of cut

A and the inverse of cut B. NĀB is the observed background events with the inverse

of cut A and cut B applied. NĀB̄ is the count when the inverse of both A and B are

applied. All of these values are outside the signal box defined in the multi-dimensional

cut space allowing us to predict the background without opening the box:

Nbkg =
NAB̄NĀB

NĀB̄
. (6.7)

The procedure goes as follows. First, apply setup cuts to the data, the number

of events in the signal box is N0. The setup cuts should remove any background

sources other than the ones that are being considered. Then the group of cuts A is

applied, while requiring that events don’t pass the set of cuts B. Only events which

are outside the signal box in the multidimensional space remain, because the inverse

of cut B has been applied. The number of events which pass these sets of cuts is

NAB̄ . Repeating the same procedure in reverse applying the set of cuts B and the

inverse of A produces NĀB . Finally, applying the inverse of both cuts A and B gives

NĀB̄ . These values are combined in Eqn. 6.7 to produce the background prediction.

Eqn. 6.7 predicts no background events, if NAB̄ or NĀB are zero. This can be

true for one of three reasons: N0 = 0, P (A) or P (B)=0, or P (Ā) or P (B̄) = 0.

The first two possibilities are what we expect and reflect cases where there should
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be no background events. The third possibility is more problematic. When P (Ā) or

P (B̄) = 0, NĀB̄ should also be zero, but statistical fluctuations may prevent that

from being true. This condition results from a poor choice of cuts where one cut

eliminates almost no background events. If possible a different choice of cuts for A

and B should be made.

6.2 Two Background Case

Multiple backgrounds sources can introduce a specific kind of correlation between the

cuts. The effect this correlation has on the background can be accounted for.

6.2.1 Derivation

The previous derivation applied in the case of a single background source. However,

if the background is made up of two different background sources, N0 = N1 + N2,

which have different cut survival probabilities then this is not correct. If that is the

case then the terms defined by Eqns. 6.3 and 6.5-6.6 instead have the form:

Nbkg = N1P1(A)P1(B) + N2P2(A)P2(B), (6.8)

NAB̄ = N1P1(A)P1(B̄) + N2P2(A)P2(B̄), (6.9)

NĀB = N1P1(B)P1(Ā) + N2P2(B)P2(Ā), (6.10)

NĀB̄ = N1P1(Ā)P1(B̄) + N2P2(Ā)P2(B̄). (6.11)

This introduces a cross-term in the previous calculation of Nbkg. I begin by
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substituting the above definitions into the solution for the one background case:

NAB̄NĀB

NĀB̄
=

[
N1P1(A)P1(B̄) + N2P2(A)P2(B̄)

][
N1P1(B)P1(Ā) + N2P2(B)P2(Ā)

]
NĀB̄

.

(6.12)

I can expand the numerator into:

NAB̄NĀB = N2
1P1(A)P1(Ā)P1(B)P1(B̄)

+ N1N2
[
P1(A)P2(Ā)P2(B)P1(B̄) + P2(A)P1(Ā)P1(B)P2(B̄)

]
+ N2

2P2(A)P2(Ā)P2(B)P2(B̄).

(6.13)

I multiply Nbkg by NĀB̄ to allow us to find the difference of Eqn. 6.12 and Nbkg:

NbkgNĀB̄ =
[
N1P1(A)P1(B) + N2P2(A)P2(B)

][
N1P1(Ā)P1(B̄) + N2P2(Ā)P2(B̄)

]
= N2

1P1(A)P1(Ā)P1(B)P1(B̄)

+ N1N2
[
P1(A)P2(Ā)P1(B)P1(B̄) + P2(A)P1(Ā)P2(B)P1(B̄)

]
+ N2

2P2(A)P2(Ā)P2(B)P2(B̄).

(6.14)
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Comparing Eqns. 6.13 and 6.14 and dividing by NĀB̄ , I find:

NAB̄NĀB

NĀB̄
= Nbkg

+
N1N2
NĀB̄

[
P1(A)P2(Ā)P2(B)P1(B̄)

+ P2(A)P1(Ā)P1(B)P2(B̄)

− P1(A)P2(Ā)P1(B)P2(B̄)

− P2(A)P1(Ā)P2(B)P1(B̄)

]
.

(6.15)

The cross term vanishes if one of the following conditions are met, if P1(A) = P2(A)

and P1(B) = P2(B). In this case for the purposes of the cuts, the two background

sources are the same.

I can simplify the cross term by rewriting the CSP’s of the inverse cuts in terms

of the CSP’s of the cuts, Pi(Ā) = 1− Pi(A). Each element of the cross term has the

same structure which can be expanded to:

Pi(A)Pj(Ā)Pk(B)P`(B̄) = Pi(A)Pk(B)(1− Pj(A))(1− P`(B))

= Pi(A)Pk(B)(1− Pj(A)− P`(B) + Pj(A)P`(B))

= Pi(A)Pk(B)− Pi(A)Pj(A)Pk(B)− Pi(A)Pk(B)P`(B)

+ Pi(A)Pj(A)Pk(B)P`(B).

(6.16)

Summing the elements of the cross term cancels out everything except the terms
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with two CSPs:

NAB̄NĀB

NĀB̄
= Nbkg

+
N1N2(P1(A)P2(B) + P2(A)P1(B)− P1(A)P1(B)− P2(A)P2(B))

NĀB̄

= Nbkg −
N1N2(P2(A)− P1(A))(P2(B)− P1(B)

NĀB̄
.

(6.17)

I can further simplify the cross term by defining ∆A = P2(A)−P1(A) and ∆B =

P2(B)− P1(B) :

Nbkg =
NAB̄NĀB

NĀB̄
+

N1N2
NĀB̄

∆A∆B . (6.18)

The second term is not the contribution from the second background source.

Instead it is a correction to the prediction from the first term which includes events of

both background types. Secondly, the values of N1, N2, ∆A, and ∆B are not directly

accessible in data without opening the signal box. These can either be derived from

Monte Carlo or from other regions in signal space.

6.2.2 Properties of the Two Background Solution

As a check on my derivation, I examine some of the properties of this solution. Eqn.

6.18 has the reasonable property that it is symmetric with respect to the definitions

of the cuts A and B and the backgrounds 1 and 2.

The correction term can be either positive or negative. However, the total Nbkg

will not be negative. The correction term will have it’s maximum negative value when

∆A = 1 and ∆B = −1 or ∆A = −1 and ∆B = 1. Under these conditions, NĀB̄ = 0

and Nbkg is undefined. I therefore want to study Nbkg’s behavior as it approaches

this limit. I begin by setting ∆B = −1 and studying the limit as ∆A → 1. In this
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case cut B removes Background 1 completely, but the Background 1 events which

survive ĀB still contribute to the prediction produced by Eqn. 6.7. Since 6.18 is

invariant with respect to the interchange of cuts A and B and backgrounds 1 and 2

this is sufficient to prove it for all cases.

The condition that ∆B = −1 sets what values the CSP’s of B can take:

P1(B) = P2(B̄) = 0, (6.19)

P2(B) = P1(B̄) = 1. (6.20)

Substituting these values into the definitions for the number of events under different

cut conditions simplifies these values:

NAB̄ = N1P1(A)P1(B̄) + N2P2(A)P2(B̄)

= N1P1(A)[0] + N2P2(A)[1]

= N2P2(A),

(6.21)

NĀB = N1P1(Ā)P1(B) + N2P2(Ā)P2(B)

= N1P1(Ā)[1] + N2P2(Ā)[0]

= N1P1(Ā) = N1(1− P1(A)),

(6.22)

NĀB̄ = N1P1(Ā)P1(B̄) + N2P2(Ā)P2(B̄)

= N1P1(Ā)[0] + N2P2(Ā)[1]

= N2P2(Ā) = N2(1− P2(A)).

(6.23)

I then substitute these values into Eqn. 6.18:

Nbkg =
N2P2(A)N1(1− P1(A))

N2(1− P2(A))
+

N1N2(P2(A)− P1(A))[−1]

N2(1− P2(A))
. (6.24)
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Adding the two terms together, I find:

Nbkg =
N1P2(A)−N1P2(A)P1(A)−N1P2(A) + N1P1(A)

1− P2(A)

=
N1P1(A)−N1P2(A)P1(A)

1− P2(A)

=
N1P1(A)(1− P2(A))

1− P2(A)

= N1P1(A).

(6.25)

As ∆A → 1, P1(A) → 0. Therefore the Nbkg goes to 0. This indicates that Nbkg is

never has a non-physical negative value.

6.2.3 Interpretation of Two Background Solution

It may seem counterintuitive that two backgrounds cannot be combined simply. This

can best be understood as the second background introducing an implicit correlation.

As an example, consider two backgrounds which individually have no correlation

between cut A and cut B, but do have different cut survival probabilities. If P1(A) =

0.75 and P1(B) = 0.75, while P2(A) = 0.25 and P2(B) = 0.25 then the resulting

combination of the two backgrounds will have a correlation. Events which survive

cut A are have a greater chance to survive cut B, because events which survive cut A

are more likely to be part of Background 1. The events that don’t survive cut A are

less likely to survive cut B, because they are more likely to be part of background 2.

Therefore there is a correlation between cuts A and B, even though for the individual

backgrounds they are uncorrelated.

The values of N1, N2, ∆A, and ∆B are not directly accessible in data without

opening the signal box. There are two options either derive these values from Monte

Carlo or from other regions in signal space. N1 and N2 generally will require some
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alternative way of predicting one of the backgrounds and the value of N0, the total

number of background after setup cuts. This raises the question, whether determin-

ing N0 biases the analysis. From N0 and the other observed background numbers,

NAB̄ , NĀB , and NĀB̄ , it is possible to effectively open the box and count Nbkg. De-

termining ∆A and ∆B also requires additional input. Their values can be derived

from either Monte Carlo or data outside the signal region.

6.2.4 A Second Derivation

What follows is a second method of deriving the two background prediction. It is

in my opinion less intuitive, but others may find it useful. It begins by defining the

cut survival probabilities for the combination of the two backgrounds and how they

relate to the CSP’s of the individual backgrounds:

Nbkg = N0P0(AB). (6.26)

P0(AB) cannot be simply expanded into P0(A) and P0(B), instead they are defined

as:

P0(AB) =
N1P1(AB) + N2P2(AB)

N0
, (6.27)

P0(A) =
N1P1(A) + N2P2(A)

N0
, (6.28)

P0(B) =
N1P1(B) + N2P2(B)

N0
. (6.29)
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The product of P0(A) and P0(B) is:

P0(A)P0(B) =

N2
1P1(A)P1(B) + N1N2(P1(A)P2(B) + P2(A)P1(B)) + N2

2P2(A)P2(B)

N2
0

. (6.30)

I multiply the numerator and denominator of Eqn. 6.27 by N0:

P0(AB) =

N2
1P1(AB) + N1N2(P1(AB) + P2(AB)) + N2

2P2(AB)

N2
0

. (6.31)

P1(AB) and P2(AB) should behave as simple probabilities without correlation, and

can be simply expanded as Pi(AB) = Pi(A)Pi(B). Applying this expansion to Eqn.

6.31 gives us:

P0(AB) =

N2
1P1(A)P1(B) + N1N2(P1(A)P1(B) + P2(A)P2(B)) + N2

2P2(A)P2(B)

N2
0

. (6.32)

I then find the difference between Eqn.’s 6.30 and 6.32:

P0(AB)− P0(A)P0(B) =

N1N2(P1(A)P1(B) + P2(A)P2(B)− P1(A)P2(B)− P2(A)P1(B))

N2
0

. (6.33)

I can further simplify the difference by again introducing ∆A = P2(A) − P1(A) and



90

∆A = P2(B)− P1(B) :

P0(AB)− P0(A)P0(B) =
N1N2∆A∆A

N2
0

. (6.34)

A similar calculation can be done for each combination of the cuts A, B and their

inverses:

Nbkg = N0P (AB) = N0P0(A)P0(B) +
N1N2∆A∆B

N0
, (6.35)

NAB̄ = N0P (AB̄) = N0P0(A)P0(B̄)− N1N2∆A∆B

N0
, (6.36)

NĀB = N0P (ĀB) = N0P0(Ā)P0(B)− N1N2∆A∆B

N0
, (6.37)

NĀB̄ = N0P (ĀB̄) = N0P0(Ā)P0(B̄) +
N1N2∆A∆B

N0
. (6.38)

I define c ≡ N1N2∆A∆B
N0

. To find the correction to the one background solution, I

follow the derivation in the one background case and expand Nbkg:

Nbkg = N0P0(AB) = N0P0(A)P0(B) + c (6.39)

=
N2

0P0(A)P0(B)P0(Ā)P0(B̄)

N0P0(Ā)PB̄

+ c (6.40)

=
(NAB̄ + c)(NĀB + c)

NĀB̄ − c
+ c. (6.41)

I wish to find a correction to the original solution for the one background case:

Nbkg =
NAB̄NĀB

NĀB̄
+

((NAB̄ + c)(NĀB + c)

NĀB̄ − c
−

NAB̄NĀB

NĀB̄

)
+ c. (6.42)
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To simplify the derivation I first calculate the term in the parentheses in Eqn. 6.42:

(NAB̄ + c)(NĀB + c)

NĀB̄ − c
−

NAB̄NĀB

NĀB̄
=

c(NAB̄NĀB̄ + NĀBNĀB̄ + NAB̄NĀB) + c2NĀB̄

(NĀB̄ − c)NĀB̄
. (6.43)

I now add c to both sides of Equation 6.43:

(NAB̄ + c)(NĀB + c)

NĀB̄ − c
−

NAB̄NĀB

NĀB̄
+ c =

c(NAB̄NĀB̄ + NĀBNĀB̄ + NAB̄NĀB) + c2NĀB̄

(NĀB̄ − c)NĀB̄
+ c (6.44)

=
c(NAB̄NĀB̄ + NĀBNĀB̄ + NAB̄NĀB + N2

ĀB̄
)

(NĀB̄ − c)NĀB̄
(6.45)

=
c((NAB̄NĀB̄ + NĀB̄NĀB̄) + (NAB̄NĀB + NĀB̄NĀB))

(NĀB̄ − c)NĀB̄
. (6.46)

I now introduce NĀ = NĀB + NĀB̄ and NB̄ = NAB̄ + NĀB̄ . These are the number

of events observed when only Ā or B̄ are applied:

=
c(NB̄NĀB̄ + NB̄NĀB)

(NĀB̄ − c)NĀB̄
(6.47)

=
cNĀNB̄

(NĀB̄ − c)NĀB̄
. (6.48)

Equation 6.48 gives the value of the correction to one background case:

Nbkg =
NAB̄NĀB

NĀB̄
+

cNĀNB̄

(NĀB̄ − c)NĀB̄
. (6.49)
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The following identities allow us to simplify the above equation:

NĀB̄ − c = N0P0(A)P0(B), (6.50)

NĀ = N0P0(A), (6.51)

NB̄ = N0P0(B). (6.52)

Substituting these in:

Nbkg =
NAB̄NĀB

NĀB̄
+

N0c

NĀB̄
. (6.53)

I expand out the value of c:

Nbkg =
NAB̄NĀB

NĀB̄
+

N1N2∆A∆B

NĀB̄
. (6.54)

This is the solution I originally derived in Section 6.2.

6.3 Cut Correlation

The criteria for cuts A and B to be uncorrelated is that the probability of an event

being cut by A is the same whether or not it is cut by B. One measure of the correlation

is the correlation coefficient [22]. A and B are random variables with values of either

0 or 1. They are 1 when an event passes the cut and 0 when the event is removed by

the cut. Their CSP’s are then the expectation values of the A and B:

ρ = Cor(A, B̄) =
Cov(A, B̄)√

Var(A)Var(B̄)
=

P (AB̄)− P (A)P (B̄)

σAσB̄
. (6.55)
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Here, σA and σB̄ are the variances of the variables A and B̄ and not the variances of

P (A) or P (B̄):

σ2
A =

1

N0

∑
(Ai− < A >)2 =

NA(1− P (A))2 + (N0 −NA)P (A)2

N0
. (6.56)

The statistical correlation ranges between -1 and 1. If the two cuts are uncorrelated

then the statistical correlation is 0. It is not necessarily the case that they are

uncorrelated if the statistical correlation is 0. It is generally considered that statistical

correlations of less than 0.1 are uncorrelated.

6.3.1 Impact of Cut Correlation

The statistical correlation is a general measure of correlation, but without a model of

how the cuts are correlated it is difficult to derive a correction to the background pre-

diction. I describe a case where the cuts are weakly correlated to establish the impact

correlation will have on the background prediction. Since the cuts are correlated, the

prior probability, which specifies the state of the other cut, must be introduced. In

this model the CSPs have small differences between posterior and prior probabilities.

I begin by specifying the background values in terms of the CSP’s, which now

specify the dependance on both cut conditions:

Nbkg = N0P (A|B)P (B) = N0P (A)P (B|A), (6.57)

NAB̄ = N0P (A|B̄)P (B̄) = N0P (A)P (B̄|A), (6.58)

NĀB = N0P (Ā|B)P (B) = N0P (Ā)P (B|Ā), (6.59)

NĀB̄ = N0P (Ā|B̄)P (B̄) = N0P (Ā)P(B̄|Ā). (6.60)
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Figure 6.2: Cut space with correlated cuts.

I proceed in the same fashion as for the two background case and substitute these

definitions into the solution (Equation 6.7) for the single background uncorrelated

case:

NAB̄NĀB

NĀB̄
=

N2
0P (A|B̄)P (B̄)P (Ā|B)P (B)

N0P (Ā|B̄)P (B̄)
. (6.61)

I am interested in the case where the correlations are small, so I define:

P (A|B̄) = P (A|B)− ε, (6.62)

P (Ā|B̄) = P (Ā|B) + ε, (6.63)

P (B|Ā) = P (B|A)− δ, (6.64)

P (B̄|Ā) = P (B̄|A) + δ. (6.65)

The values of ε and δ should be small compared to those of the CSP’s. I substitute

these definitions into Eqn 6.61:

NAB̄NĀB

NĀB̄
=

N0P (Ā|B)(P (A|B)− ε)P (B)

P (Ā|B) + ε
, (6.66)
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NAB̄NĀB

NĀB̄
=

N0(P (A|B)P (B)− εP (B))

1 + ε
P (Ā|B)

. (6.67)

If I assume the ε term in the denominator is small, I can then expand this result

as:

NAB̄NĀB

NĀB̄
≈

(
N0(P (A|B)P (B)− εP (B)))

)
× (1− ε

P (Ā|B)
+

ε2

P (Ā|B)2
+O(ε3)).

(6.68)

Multiplying this out and keeping the second order terms of ε gives the equation

NAB̄NĀB

NĀB̄
= N0P (A|B)P (B)− εN0

(
P (B) +

P (A|B)P (B)

P (Ā|B)

)
+ ε2N0

( P (B)

P (Ā|B)
+

P (A|B)P (B)

P (Ā|B)2
)
.

(6.69)

The first term with no ε factors is Nbkg. The condition for the correlations to

have a negligible impact on the background prediction is that the ε terms be much

smaller than
NAB̄NĀB

NĀB̄
:

Nbkg =
NAB̄NĀB

NĀB̄
+ εN0P (B)

(
1 +

P (A|B)

P (Ā|B)

)
− ε2N0

P (B)

P (Ā|B)

(
1 +

P (A|B)

P (Ā|B)

)
.

(6.70)

I can rearrange Eqn 6.70 to find correction terms to account for the correlation. These

terms however, require opening the signal box to know the correct values of the CSP’s.

I can approximate these values with less knowledge, under the assumption that the
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number of events in the signal box is small:

P (B) =
NAB + NĀB

N0
, (6.71)

P (B) ≈
NĀB

N0
, (6.72)

P (A|B)

P (Ā|B)
=

NAB
NB

NĀB
NB

≈
Npred
NĀB

. (6.73)

These approximations give us first order correction of:

Cε = εNĀB(1 +
Npred
NĀB

). (6.74)

One particular aspect of the impact of the prediction on the cut correlation is it’s

dependance on the value of N0. This leads to two competing forces in optimizing the

division of cuts into the setup cuts and the bifurcation cuts. From the perspective of

minimizing statistical error in the bifurcation prediction, one would like a large value

for N0 with powerful cuts for cut A and B, so that the statistical errors on the terms

of Eqn. 6.7 are small. On the other hand, a large N0 means the prediction is sensitive

to small correlations between the cuts.

6.4 Discussion

The bifurcation analysis technique allows us to produce data driven background pre-

dictions while still maintaining a blind analysis. In this chapter I have shown how to

extend the bifurcation analysis to the case of two background sources and correlated

cuts. The primary purpose that we will use them for is to estimate errors on the

one background, uncorrelated cut analysis. Properly correcting for multiple back-
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ground sources and cut correlations requires the input of Monte Carlo or applying

cut probability information from background regions to the signal box which is poorly

understood or has high statistical uncertainties.



CHAPTER 7

TOY MODEL OF THE BIFURCATION ANALYSIS

TECHNIQUE

In this chapter I describe the application of the bifurcation analysis technique to a

toy model. I utilize the Mathematica software package to simulate this system [23].

7.1 The Model

Each event consists of four variables. Two kinematic variables, p and x which are

used to describe the signal region and two cut variables, a and b which will be used

to define the cuts. All of these variables range from 0 to 1.

We define 2 different types of events: background 1 and background 2. The

probability distribution function of each variable for the two background types is

shown in Table 7.1. They both have x variables with uniform distributions between

0 and 1. Their p’s have uniform distributions between 0 and x for Background 1 and

between 0 and 1−x for Background 2. Background 1 has an uniform distribution of a

between 0 and 1 and variable b has a linearly decreasing density with values between

0 and 1. Background 2’s a distribution is a linearly decreasing density with values

between 0 and 1 and an uniform distribution between 0 and 1 for b. The distributions

of the kinematic variables p and x are shown in Fig 7.1. We define a signal region by

specifying the allowed kinematic variables: 0.25 < x < 0.75 and 0.25 < p < 0.75.

98
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Background x p
1 f(x) = 1, x ∈ (0, 1] f(p) = 1/x, p ∈ [0, x]

f(x) = 0, x /∈ (0, 1] f(p) = 0, p /∈ [0, x]
2 f(x) = 1, x ∈ [0, 1) f(p) = 1/(1− x), p ∈ [0, 1− x]

f(x) = 0, x /∈ [0, 1) f(p) = 0, p /∈ [0, 1− x]

Background a b
1 f(a) = 1, a ∈ [0, 1] f(b) = 1− b, b ∈ [0, 1]

f(a) = 0, a /∈ [0, 1] f(b) = 0, b /∈ [0, 1]
2 f(a) = 1− a, a ∈ [0, 1] f(b) = 1, b ∈ [0, 1]

f(a) = 0, a /∈ [0, 1] f(b) = 0, b /∈ [0, 1]

Table 7.1: Probability distribution functions for the variables of each event type in
the Toy Model.
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Figure 7.1: Kinematic variable distributions for Backgrounds 1 and 2.

Figure 7.2: Distribution of a for Background 2.



100

Event Type P (A) P (B)
Background 1 0.5 0.25
Background 2 0.25 0.5

Table 7.2: Cut survival probabilities for each event type.

7.1.1 Cuts

We define our cuts on variables a and b as

A = (a > 0.5) (7.1)

B = (b > 0.5) (7.2)

A and B are true or false statements. If they are false the event is cut. With the

cut points defined, we can then calculate the cut survival probability (CSP) for each

event type which we represent as P (A) or P (B). In this toy model the CSP’s can be

calculated analytically because we know the underlying distributions. These values

are shown in Table 7.2.

7.2 One Background

For this section we discuss the case of a single significant background. Our background

prediction is given by Eqn 6.7.

For this example we generated 1× 104 Background 1 events over the whole range

of kinematic variables. This leaves us with ≈ 2200 background events in the signal

region before applying cuts A and B. In Table 7.3, we show the observed number

of events for each combination of cuts, the predicted background, and the observed

background after applying both cut A and B. The predicted background of 267.8±20.6

agrees well with the 256± 16 observed background events.
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N0 2236± 47
NAB̄ 831± 29
NĀB 280± 17
NĀB̄ 869± 29
Predicted Background 267.8± 20.6
Observed Background 256± 16

Table 7.3: Single background study.

7.2.1 Cut Correlation

To study the effects of cut correlation, we introduce a correlation between the a and

b variables in Background 1. We add a term linearly dependent on b to a, and then

rescale a to to reduce the change in background due to just the change in the average

value of a.

f(a) = (1 + ε′), a ∈ [ε′b/(1 + ε′), (1 + ε′b)/(1 + ε)] (7.3)

The variable ε′ is the knob we use to tune the correlation. It is closely related to

the variable ε that is described in Section 6.3.1 as is shown in Figure 7.3. For easier

comparison to the derivation in Chapter 6, we describe the variation of the model in

terms of the ε variable.

Figure 7.3: The value of ε (described in Section 6.3.1 as a function of ε′ as given in
Equation 7.3.)

The statistical correlation of the cuts changes as ε changes, as we would expect.
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As shown in Figure 7.4, the correlation goes from highly positive with negative ε to

highly negative correlated with positive ε.

Figure 7.4: The statistical correlation, ρ, as a function of ε.

We show the predicted and observed background in Figure 7.5. As ε′ increases the

background in data increases, as the correlation increases the average value a, while

the predicted background decreases.

We can try to correct for the correlation by adding the first order correlation term

of Eqn 6.73 as

Cε = N0
(
ε(P (B) +

P (A|B)P (B)

P (Ā|B)
) (7.4)

In Figure 7.5, we show the prediction with Cε added. It improves the agreement for

a fairly wide range of ε. We then show the effect of the practical correction of Eqn.

6.74 on the prediction in Fig. 7.6. This improves the agreement for all values of ε

although the agreement is not as good for small values of ε.

7.3 Two Backgrounds

In this case we add events from Background 2. In Fig. ??, we show the distribution of

Background 1, Background 2, and an equally weighted combination of the two back-

grounds. We can see how the two variables which are uncorrelated for the separate
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Figure 7.5: Predicted and observed background for different levels of correlation
between a and b. Blue triangles are data background, red squares are predicted,
and green diamonds are predicted plus first order ε correction (Eqn. 7.4). The x-axis
is ε.
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Figure 7.6: Predicted and observed background for different levels of correlation
between a and b. Blue triangles are data background, red squares are predicted,
and green diamonds are predicted plus practical ε correction (Eqn. 6.74). The x-axis
is ε.
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backgrounds, but are strongly correlated when both backgrounds are present.
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Figure 7.7: Contour plots of the distribution of a and b for backgrounds 1 and 2 and
an equally weighted combination of the two.

7.3.1 One background calculation

We begin by calculating with the false assumption that there is a single background

mode. We vary the relative admixture of Background 2. The discrepancy between the

prediction and the observed background increases as the the number of background

events from the second source increases. In Figure 7.8, we show the variation of

predicted and observed background as the number of Background 2 events increases

while holding the total number of background events constant.

7.3.2 Correction

We now apply the correction term, Eqn. 6.18, to the background prediction.

In the case of this toy model, we know the values of N1 and N2 because we

have set them. In a real analysis, it would be necessary to determine these values

through either Monte Carlo studies or studies of different signal regions which are

then extrapolated into the signal box. The differences in the cut probabilities, ∆A

and ∆B , also need to be determined from outside sources. In Figure 7.8, we show the
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Figure 7.8: Predicted and observed background for different admixtures of a second
background source. Red squares are predicted background (without second back-
ground correction), blue trianges are the observed background in data, and green
diamonds are the corrected background. The x-axis is number of generated Back-
ground 2 events, the total number of events, N1 + N2, was held constant at 2× 104.

results of keeping the total number of background events the same while increasing

the fraction of Background 2 events. In this model ∆A = −25% and ∆B = 25%.

Since the probability differences are of opposite signs the correction factor is negative

and reduces the predicted background.

7.3.3 Model 2

We can change the model so that the differences in cut survival probability have

the same sign inducing a positive correction. We alter our original model so that

Background 1 has the same linearly decreasing distribution in both cut variables,

while Background 2 has a uniform distribution in each cut variables. The probability

distribution functions for a and b are shown in Table 7.4. This produces values for

the differences in the cut variables of ∆A = ∆B = 0.25. We then can see in Figure 7.9

that the uncorrected prediction now under predicts the background and correction is

positive.
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Background a b
1 f(a) = 1− a, a ∈ [0, 1] f(b) = 1− b, b ∈ [0, 1]

f(a) = 0, a /∈ [0, 1] f(b) = 0, b /∈ [0, 1]
2 f(a) = 1, a ∈ [0, 1] f(b) = 1, b ∈ [0, 1]

f(a) = 0, a /∈ [0, 1] f(b) = 0, b /∈ [0, 1]

Table 7.4: Probability distribution functions for the variables of each event type in
Model 2.
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Figure 7.9: Predicted and observed background for different admixtures of Back-
ground 2 for Model 2. Red squares are predicted background (without second back-
ground correction), blue triangles are the observed background in data, green dia-
monds are the corrected prediction. The x-axis is the number of generated Back-
ground 2 events, the total number of events, N1 + N2, was held constant at 2× 104.



CHAPTER 8

BACKGROUND ANALYSIS

It is necessary to predict the background to the signal modes. These backgrounds are

primarily KL → π0π0π0 decays and interactions of neutrons in the beam core. It is

difficult to simulate these backgrounds for a variety of reasons. The amount of Monte

Carlo necessary to adequately predict the background level from KL → π0π0π0 is

difficult to produce. The core neutrons are difficult to simulate because accurately

reproducing low-energy hadronic interactions is problematic. Additionally, it is dif-

ficult to normalize a neutron Monte Carlo sample to the data with any certainty.

Therefore we use the data based bifurcation analysis technique described in Chapters

6 and 7 rather than a Monte Carlo based background prediction.

8.1 Kaon Background Modes

The primary backgrounds for our analysis come from other KL decay modes in the

detector. There are several potential kaon decay modes which could produce back-

grounds, including both KL → π0π0π0 and KL → π0π0. The charged kaon decay

modes are not a significant background source.

8.1.1 KL → π0π0π0

The primary background to KL → π0π0νν̄ and KL → π0π0P is the decay KL →

π0π0π0. As the π0 decays to 2 photons with a branching ratio of 98.8%, this normally

has six photons in the final state, if we miss two of the photons then this can mimic

the final states of the signal decays which have 4 photon final states. The primary

difference is that the peak of the PT distribution for KL → π0π0π0 is lower than that
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of KL → π0π0νν̄ or KL → π0π0P .

There are two causes of missing photons in the final state, photon inefficiency and

photon fusion. Photon inefficiency occurs when a photon either does not produce

a detectable signal in one of the detector elements. This can occur either because

of geometric inefficiency, where photon did not strike an active detector element, or

detector inefficiency, where the photon does not interact in the detector or interacts

via the photo-nuclear effect and does not produce a detectable in-time signal.The

second cause of missing photons is photon fusion in the CsI calorimeter. Here two

photons strike close to each other in the CsI array. If the photons are close enough

only one cluster is reconstructed.

The requiring four clusters in the CsI for reconstructions allows three different

channels for KL → π0π0π0 to be a background depending on the number of photon

fusions and missing photons. The relative level of background from each channel was

found using our KL → π0π0π0 Monte Carlo. We assumed there was a minimum

separation of two photons at which they could be distinguished. Applying our setup

cuts, we find that the KL → π0π0π0 background is predominately from events with

two missing photons. The relative background levels of the different channels under

different effective separations are shown in Table 8.1. The background events generally

have low PT and mass values compared to signal events. The PT of KL → π0π0π0

events increases for vertices which are closer to CsI face, Fig 8.2. The different

channels have similar distributions of kinematic variables as shown in Fig 8.1.

8.1.2 KL → π0π0

It is possible for a KL → π0π0 event to be poorly reconstructed or have extra energy

deposited by accidentals, so that the event has a high PT and low invariant mass.
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KL → π0π0π0 Background Maximum Fusion Separation
Channel 7 cm 10 cm 14 cm
2 Missing Photons (97.0± 1.4)% (96.1± 1.4)% (94.4± 1.4)%
1 Missing Photon, 1 Fusion (2.4± 0.2)% (3.3± 0.2)% (4.8± 0.2)%
2 Fusion (0.7± 0.1)% (0.7± 0.1)% (0.8± 0.1)%

Table 8.1: Relative levels of different types of KL → π0π0π0 background under
different levels of photon separation efficiency.
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Figure 8.1: KL → π0π0π0 Monte Carlo background events in PT vs invariant mass
plane. Red dots represent events with no photon fusion, green dots are events with
one photon fusion, and blue dots have 2 photon fusions.
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Pt vs Z
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Figure 8.2: Distribution of Monte Carlo KL → π0π0π0 events in PT -Z plane.

These events are primarily in the High PT background region.

8.1.3 Charged Kaon Decays

The various charged decays of KL are not a significant source of background at this

sensitivity. These decays

One source of charged particles is the Dalitz decay of π0’s into e+e−γ. This decay

is included in our simulations of KL → π0π0π0 and KL → π0π0. This is not a

significant source of backgrounds.

8.2 Neutron Background

The e391a beam is has a neutron to kaon ratio of approximately 60 to 1 [2]. These

neutrons can produce backgrounds in a variety of ways. Neutrons directly interacting

with the detector can produce showers which can be misinterpreted as photon showers.

Additionally, π0’s can be produced by neutron interactions. The largest source of
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these interactions is the vacuum membrane which hung down into the membrane

during this run as described in Sect. 2.2.1. In general low energy neutrons are

difficult to simulate. Additionally, we do not know the actual distribution of the

membrane in the beam which produces core neutron events. Therefore it necessary to

produce estimates of the neutron background from the data itself. We can predict the

background from the core neutrons hitting the membrane by fitting the reconstructed

Z distribution outside the signal box and extrapolating into the signal box.

8.2.1 Core Neutrons

Neutrons which are part of the central beam are called core neutrons. These neutrons

primarily interact with the vacuum membrane which is in the beamline during Run

I. They produce high PT four gamma events similar to the halo neutrons. These are

localized at the position of the vacuum membrane 60 cm from the CsI face.

8.2.2 Halo Neutrons

The beam is surrounded by a halo of neutrons. Halo neutrons are generally produced

by beam interaction with the collimators. The beam has a low level of halo neutrons

relative to the beam intensity. The primary source of halo neutron background is

from the interaction of the halo with CC02, which is the upstream detector element

closest to the beam. This produces high PT four gamma events. They are localized

in Z at the downstream edge of CC02.

8.3 Application of the Bifurcation Analysis

To predict the number of background events, we begin by using Eqn 6.7. This assumes

there is a single background source and no correlations between the sets of cuts.
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Cut Correlation Values KL → π0π0π0

Cuts Setup Cuts Cut Set A Cut Set B
Data MC Data MC Data MC

Setup -1 -1 0.0526 0.0146 -0.0487 -0.0544
Set A 0.0526 0.0146 -1 -1 0.0311 0.0122
Set B -0.0487 -0.0544 0.0311 0.0122 -1 -1

Table 8.2: Statistical correlation between setup, set A, and set B cuts in KL →
π0π0π0 background region. Monte Carlo values are for KL → π0π0π0 events.

For the bifurcation analysis we divide our cuts into:

• Setup: Fusion Neural Network, Gamma Fiducial, Energy Ratio, Gamma E.D.I.,

CsI Veto, BA Veto

• A: Photon veto cuts. CC02, CC03, CC05, Front Barrel, Main Barrel

• B: Gamma Quality and Reconstruction cuts. Gamma Energy, Gamma RMS,

χ2, 2nd Best χ2

Applying cuts A and B to the KL → π0π0π0 background region, we find they

a statistical correlation of 0.031. This is summarized in Table 8.2. A statistical

correlation with an absolute value of less than 0.1 indicates the cuts are not linearly

correlated. In Section 8.4.3, we estimate the uncertainty to the background prediction

arising from this level of cut correlation.

The KL → π0π0π0 background with the setup cuts applied is dominated by events

with two missing photons. One fusion events are a few percent of the KL → π0π0π0

background and two fusion events are less than one percent. Additionally, the veto

survival probability of the cuts we use does not vary greatly between the different

background channels. The core neutron background is small enough (see below) that

it is not a problem for using the bifurcation analysis.

To check the background prediction methodology, we applied the technique to
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Region NAB̄ NĀB NĀB̄ Background Prediction Data
Low PT 72± 8.5 115.0± 10.7 393± 19.8 21.1± 3.34 13
High Mass 4.0± 2.0 3.0± 1.7 46± 6.8 0.78± 0.48 1
Low Z 0 0 0 0 0
High Z 0 6.0± 2.4 0 0 0

Table 8.3: Background prediction for regions neighboring the signal box.

Cut Set Number of Events in Signal Box
Setup Cuts 104.0± 10.2

NAB̄ 18.0± 4.2
NĀB 2.0± 1.4
NĀB̄ 83± 9.1

Background Prediction 0.43± 0.32

Table 8.4: Number of events in signal box for various cut conditions and KL →
π0π0π0 background prediction.

regions near the signal box. The Low PT region is defined by same bounds in Z and

invariant mass as the signal region and a PT between 50 and 100 MeV. The High

Mass region is defined by the same bounds in Z and PT as the signal region and a

mass between 450 and 550 MeV. The High and Low Z regions have the same bounds

in invariant mass and PT as the signal region and have reconstructed vertices between

500 to 550 cm and 250 to 300 cm respectively. The measurements and predictions

are compared in Table 8.3. There is a significant discrepancy in the Low PT region,

which can be explained by cut correlation as will be shown in sect:correlation.

8.4 Background Prediction Errors

The KL → π0π0π0 background prediction has two sources of systematic error, the

first is contamination from other decay modes. The second is correlation between the

cut sets producing error into our prediction.
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8.4.1 Core Neutron Background

The primary source of background events, besides KL → π0π0π0, are the core neu-

trons. To determine the impact of core neutron interactions contaminating the bi-

furcation analysis, we use Eqn 6.18. The first step is estimating the number of core

neutrons in the signal box under the setup cuts. We do this by fitting the distribution

of core neutron events in data outside the fiducial Z region and extrapolating it into

the fiducial region.

We would like to fit the distribution under the final cut conditions, but the number

of events in the region with z greater than 500 cm and PT greater than 0.1 GeV/c

is too small to fit when all cuts are applied. We therefore fit using a loose set of

cuts. We remove the BA cut, the gamma E.D.I. cut, and the gamma T.D.I. cut.

Additionally we apply the reverse of cuts A and B. With these sets of cuts the core

neutron peak in the high PT -high Z region is clearly visible and can be fit with a

Gaussian.

The primary membrane peak of the core neutrons is fit by a Gaussian. To account

for a possibly non-Gaussian tail to the core neutron peak, we assume a flat distribution

underneath the peak. The density of this distribution is calculated by subtracting

off the KL → π0π0π0 contribution found by Monte Carlo. Using our KL → π0π0π0

Monte Carlo normalized to the KL → π0π0 peak significantly over predicts this

background. However the shape of the background is similar in data and Monte

Carlo. We reduce the KL → π0π0π0 by a factor of 3.3 from its’ normalized value

to match the data. Then what remains is fit by a Gaussian plus a straight line.

Integrating this function over the fiducial region gives an estimate of the background

as 248 ± 4stat. + 124syst.. The large systematic error is from uncertainty over the

normalization of the KL → π0π0π0 sample which we subtract off. The application of
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Figure 8.3: Reconstructed Z distribution with loose cuts and PT greater than 100
Mev/c. Fit with a 4th-order polynomial plus a Gaussian. Red line is scaled KL →
π0π0π0 Monte Carlo.
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Figure 8.4: Reconstructed Z distribution with loose cuts and PT greater than 100

Mev/c with scaled KL → π0π0π0 Monte Carlo subtracted. Fit with a straight line
plus a Gaussian.
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KL → π0π0π0 Number of Events Background Survival Probability
Channel Setup Cuts Cut A Cut B
2 Missing Photons 9087 (59.4± 1.0)% (11.6± 0.4)%
1 Missing Photon, 1 Fusion 309 (59.2± 4.4)% (7.8± 1.7)%
2 Fusion 64 (65.6± 13.0)% (17.2± 5.6)%

Table 8.5: KL → π0π0π0 background survival probability from KL → π0π0π0 Monte
Carlo.

the rest of the setup cuts reduces this by a factor of ≈ 115.

Producing a predicted total core neutron background in the signal region of 2.16±

0.03stat.±1.05syst. under the setup cuts, before the application of cuts A and B. This

corresponds to N2 in Eqn 6.18.

The next step in applying Eqn 6.18 is finding the differences in cut survival prob-

abilities, ∆A and ∆B . We use the data in the High PT - High Z region to esti-

mate this. We find that the cut survival probabilities do differ significantly with

∆A = (26.4 ± 1.3)% and ∆B = (8.6 ± 0.5)%. This results in a correction to the

background prediction of 0.06± 0.05 events.

8.4.2 Other KL → π0π0π0 Background Channels

As discussed in Section 8.1.1 there are three channels through which KL → π0π0π0

events can become backgrounds to our signal. The primary source of KL → π0π0π0

background at the setup cut stage are events with two missing photons. The second

largest source are events with 1 missing photon and 1 photon fusion. Using Monte

Carlo we estimate that (3.3± 0.2)% of the KL → π0π0π0 background are 1 missing

and 1 fusion events. We estimate the difference in cut survival probabilities between

the three modes using Monte Carlo as shown in Table 8.5 and 8.6.
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Background Channel N1 N2 ∆A ∆B Change

KL → π0π0π0 1 Fusion 100.6 3.4 4.4 % 3.8 % 6.8× 10−3

Core Neutron 101.9 2.1 26.4% 8.6% 0.06

Table 8.6: Effects of contamination on KL → π0π0π0 bifurcation background predic-

tion. N1 is the number of KL → π0π0π0 2 missing photon events under the setup
cuts. N2 is the number of contaminating events under the setup cuts. ∆A and ∆B
are the difference in the veto survival probabilities.

8.4.3 Correlation

We divided our cuts on the basis of minimizing cut correlation. However, as discussed

in Sect. 8.3, there is some correlation. We use Eqn 6.74 to estimate the error in our

prediction from what correlation there is. We determined ε using events in the Low

PT region. The value of ε is (−0.049 ± 0.035). We first apply Eqn 6.74 to the Low

PT region and find a correction of −6.67±4.81. This correction brings the prediction

in Table 8.3 into much better agreement with data. Next, we apply this procedure to

the signal region. We calculate a systematic error of 0.12 ± 0.12 background events

in the signal region.

8.4.4 Combining Systematic Errors

We add the systematic error from correlation and the core neutrons in quadrature.

In Sect. 6.2.3, we discussed how multiple background sources are actually an implicit

correlation. However, since our estimate of the correlation error is based on the

strength of correlation in the KL → π0π0π0 Low Mass-Low PT region where there is

no significant core neutron contamination this does not cause any overcounting.

The total error for our background prediction is 0.32 events statistical error and

0.13 event systematic error.
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Systematic Error Source Contribution
Core Neutron Contamination 0.06

KL → π0π0π0 1 Fusion Contamination 0.01
Cut Correlation 0.12

Total Systematic Error 0.13

Table 8.7: Contributions to background prediction systematic error.



CHAPTER 9

RESULTS AND ERROR ANALYSIS

9.1 Single Event Sensitivity

From the acceptance of the KL → π0π0νν̄ and the flux we can determine our single

event sensitivity.

S.E.S. =
1

AKL→π0π0νν̄ ×NKL

. (9.1)

Our single event sensitivity for KL → π0π0νν̄ is (1.21±0.06)×10−5. The calculated

sensitivities for the other modes are shown in Table 5.3 and Fig. 5.16.

9.2 Opening the Box

We open the box and observe one event in the signal box. This is consistent with our

background prediction of 0.43 ± 0.32stat. ± 0.13 sys.. The event is located near the

low PT edge of the signal box and well inside the fiducial Z region, indicating that it

is likely a KL → π0π0π0 event. The results are shown in Figures 9.1 and 9.2.

9.2.1 Limit

We use Poisson statistics to calculate an upper limit for the branching ratio of KL →

π0π0νν̄. At the 90% confidence level with one observed background event the limit

is

Br(KL → π0π0νν̄) ≤ 3.89× S.E.S (9.2)

≤ 4.7× 10−5. (9.3)

120
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Figure 9.1: Plot of PT versus invariant mass from data with an opened signal box.
There is one event inside the signal region. All cuts are applied and only events in
the fiducial Z region (300 to 500 cm) are shown.

Pt vs Z

Z Decay Vertex (cm)

T
ra

n
sv

er
se

 M
o
m

en
tu

m
 (

G
eV

)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 300 400 500 600

Signal

2!0 Signal

High Z
Low Z

CC02 Endpoint CsI Face

Figure 9.2: Plot of PT versus reconstructed Z from data with an opened signal box.
All cuts are applied and events with all invariant mass values are shown.
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In Figure 9.3, we show the limits we establish for KL → π0π0νν̄ with and without

the decay form facctor, and for KL → π0π0X with masses of up to 200 MeV.

Figure 9.3: Limits at the 90% confidence level for KL → π0π0νν̄ and KL → π0π0P
decay modes.

9.3 Error Analysis

9.3.1 Acceptance and Flux Errors

Errors in the acceptance and flux are caused primarily by discrepancies between data

and Monte Carlo. For cuts where there appeared to be a significant discrepancy, the

cut was removed from the flux calculation and the impact of that cut on the signal

acceptance was determined using data. However, there are still smaller discrepancies

that introduce error in our acceptance and flux calculations. One important source

of these errors is the energy calibration of the detector elements.

S.E.S. =
1

AKL→π0π0νν̄ ×NKL

=
BR(KL → π0π0)× AKL→π0π0

AKL→π0π0νν̄ ×NKL→π0π0
. (9.4)
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Veto Cut Point Change in Acceptance
Lower Energy Scale Higher Energy Scale

(80%) (120%)
CC02 1 MeV 0.0 % 0.0 %
CC03 2.5 MeV 1.6 % 1.4%
CC05 4 MeV 0.7 % 0.3 %
Front Barrel 4 MeV 1.6% 1.0 %
Main Barrel 2 MeV 1.7% 2.4 %
CsI Veto 3 MeV 0.3% 0.0 %

Table 9.1: Variation in KL → π0π0 acceptance due to variation in energy scale for
photon vetoes.

9.3.2 Energy Calibration Errors

To estimate the impact that incorrect detector calibration may have on our accep-

tance and flux calculation we varied the cut points of our photon vetoes. Then we

determined the change of acceptance in data for the KL → π0π0 decay mode. The

change in acceptance for variations in energy scale of 20% for each photon veto is a

few percent. The results are summarized in Table 9.1.

Taking the largest variation for each photon veto and summing the contributions

we calculate a 3.7% error in the acceptance from the photon vetoes’ energy scale.

9.3.3 Other Cuts

We use the acceptance loss difference between KL → π0π0 data and Monte Carlo to

determine the systematic errors in acceptance from the other simulated cuts. These

values are shown in Table 5.1. There are only three cuts which have statistically

significant differences in the acceptance loss. These are the Gamma E.D.I. cut, the

Gamma Fiducial cut, and the Gamma RMS cut. Combining the differences from

these three cuts, we find a 3.4% systematic error in acceptance from these vetoes.
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Region Acceptance Loss from Non-simulated Cuts

KL → π0π0 Low PT (< 50 MeV) (85.9± 0.9)%

KL → π0π0 High PT (50-100 MeV) (81.0± 3.5)%

KL → π0π0 All (85.5± 0.9)%

KL → π0π0π0 All (89.4± 0.5)%

Table 9.2: Acceptance loss from non-simulated cuts in different PT regions.

9.3.4 Non-Simulated Cuts

Several of our cuts were either not simulated or showed significant discrepancy be-

tween their data and Monte Carlo acceptances. For these cuts we used their ac-

ceptance losses from KL → π0π0 signals to estimate the acceptance loss for KL →

π0π0νν̄. The largest difference between these two signal regions is the difference in

PT . One way to try to understand what impact this has on the acceptance loss from

these cuts is to study the difference in acceptance loss in high and low PT KL → π0π0

events.

There is no significant difference in the acceptance loss between the two PT regions

as summarized in Table 9.2. This indicates that for the non-simulated cuts there is

no significant PT dependance in the acceptance loss.

9.3.5 Single Event Sensitivity Error

Summing the systematic error contributions quadratically gives us a 7.1% systematic

error in the single event sensitivity. The contributions are summarized in Table

9.3. This is an overestimate, because the acceptance errors in KL → π0π0 and

KL → π0π0νν̄ are likely highly correlated.
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Systematic Error Source Contribution
Photon Veto Energy Calibration 3.7%
Other Simulated Cuts 3.4%
Total Acceptance Error 5.0%

KL → π0π0 Branching Ratio 0.46%

Total Systematic Error 7.1%

Table 9.3: Contributions to Single Event Sensitivity systematic error.



CHAPTER 10

CONCLUSIONS

10.1 Results

We have set the first experimental limit on KL → π0π0νν̄. In addition, we have set

the first direct experimental limits on the decay KL → π0π0P where the sgoldstino

decay in unobservable. These results are summarized in Table 10.1.

Using Eqn. 1.34, we can constrain the real component of the coupling constant,

h
(D)
12 . These limits are shown in Fig. 10.1.

Figure 10.1: Limits on |Re(h
(D))|
12 versus sgoldstino mass.

10.2 Future Prospects

This limit for these modes is background limited with the predicted background

level and the compatible observation of one background event. The KL → π0π0π0

background is a fundamental background. Scaling to the full data set of Run I with the
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Mode Single Event Sensitivity Limit (90% Confidence Level)

KL → π0π0νν̄ (1.21± 0.06)× 10−5 4.7× 10−5

KL → π0π0P

MP = 25MeV (2.89± 0.06)× 10−7 1.1× 10−6

MP = 50MeV (3.02± 0.09)× 10−7 1.2× 10−6

MP = 75MeV (2.89± 0.09)× 10−7 1.1× 10−6

MP = 100MeV (3.06± 0.09)× 10−7 1.2× 10−6

MP = 125MeV (3.47± 0.11)× 10−7 1.3× 10−6

MP = 150MeV (4.55± 0.15)× 10−7 1.8× 10−6

MP = 175MeV (9.00± 0.35)× 10−7 3.5× 10−6

MP = 200MeV (4.93± 0.38)× 10−6 1.9× 10−5

Table 10.1: Single event sensitivities and limits for the various signal modes and
sgoldstino masses.

current background rejection power would produce approximately 5 to 10 background

events which would overwhelm the increase in flux resulting in no improvement for

the limit. However, the later runs do not have the vacuum membrane hanging in the

beam line. This significantly changes the profile of background events. Loosening cuts

which are powerful against the core neutron backgrounds (primarily gamma quality

cuts) and tightening cuts effective against KL → π0π0π0 background (photon vetoes)

may allow analysis of larger quantities of data without background limitations. The

E391a experiment has taken two runs of data without the vacuum membrane problem

which contain approximately ten times sample size of this analysis.

The E391a collaboration currently plans a series of follow up experiments at the

new JPARC accelerator facility currently under construction. For this experiment

there are several changes that could improve sensitivity to KL → π0π0νν̄. First,

is an improved CsI array with smaller blocks. Smaller blocks will allow for greater

fusion rejection power. Since this is a major cause of KL → π0π0π0 background this

should lead to improved performance.
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