

K° 実験のための K°ビームフラックスとスペクトル測定

佐賀大学 工学系研究科 川久保 直大

小林 茂治,新川 孝男 A, 阿久根 洋平,阿部 耕平,井上 誠二,小川 郁世,小嶋 哲治 他 E391a グループ 佐賀大学,防衛大学校 A

Contents

- 1 目的
- 2 実験
 - 実験方法
 - 実験装置
- 3 解析
 - 実験と MonteCarlo を比較
- 4 結果
- 5 結果のチェック
- 6 まとめ

- ペ K° ビームラインでの K°フラックスと運動量分布を実験的に求める
 - 2001年に実験エリアでビームテストを実施
 - ▶ 昨年はOpening angleの解析までに留る
- ペ K°ビームライン
 - ▶ KEK 12GeV-PS 加速器

◆ 東カウンターホール

KO BEAM LINE LAYOUT IN EAST HALL AT KEK

実験方法

★ K⁰の運動量と Opening angle の相関を利用

- ★ Ke3 は相関が見えやすく、バックグラウンドが少ない
 - Ke3 を主に解析
 - ▶ Kµ3でチェック
- ▶ Ke3,Kμ3のOpening angleと運動量の相関

Correlation of KL momentum and opening angle

実験装置

14°,24°,34°のセットアップで測定

Cherenkov counter

Cherenkov counter の ADC 分布

◆ eの識別

▶ が混入しない領域を選択

用いた運動量分布とフラックス

◆ MonteCarlo による運動量分布 ル

MonteCarlo

- 運動量分布(ターゲット)
- ▶ K⁰フラックス
 - $2.3 \times 10^2 / 10^{10}$ protns

比較(1)崩壊点分布

🔹 実験データの崩壊点分布 🔹 MonteCarlo の崩壊点分布

の崩壊、相互作用などがよく再現されている

比較(2) Opening angle

Opening angle の分布

Opening angle

運動量分布

Opening angle を運動量に変換

Ke3 の相関

Correlation between Opening angle and KL momentum

/ 方法

- ▶ 相関におけるばらつきを考慮
- 1) ブロックに分割し重みをもとめる
- 2) 実験で得られた各角度イベントを重みで振り分ける
- 3) 各運動量領域のイベントを足しあげる

比較(3)運動量分布

◆ 得られた運動量分布

- ♣ Hodoscope のアクセプタ ンスがかかっている
 - 本実験特有のものになる

- ◆ 実験と MonteCarlo の比 をとる
 - ▶ 用いた運動量分布と真の 運動量分布の比でもある

各セットアップでの運動量分布の比

▶ 実験と MonteCarlo の比

◆ 実験と Monte Carlo の運動量 分布の比が 1 ではない

- ル 用いた運動量分布は不適当
 - ▶ 相関の分布に影響
 - ▶ K⁰の崩壊点分布に影響

- ◆ この比を、用いた運動量分布 に掛け補正
 - ▶ 再度 MonteCarlo を行う

ターゲット位置での運動量分布

・ 実験により得られた運動量分布

本 再度 MonteCarlo を行い 同様の解析を行う

再計算後の運動量分布の比

▶ 実験と MonteCarlo の比

★ 実験と MonteCarlo の比が一致

- ◆ 実験と MonteCarlo の運動量分 布が一致
 - ▶ K⁰フラックスを求める

K⁰フラックス

- バックグラウンドの少ない Ke3 を使用

 - 8 x 10¹⁵protons で規格化各セットアップで比(exp/sim)が一致
 - ▶ フラックスは予測値の 28.5%

セットアップ	14°	24°	34°
実験	2771	1154	307
MonteCarlo	10050	3944	107
比 (exp/sim)	0.276	0.293	0.287

K⁰フラックスは $7.18 \times 10^2 / 10^{10}$ protons

チェック(1) Kµ3の運動量分布の比

▶ Ke3とKμ3の比較

Kµ3でのチェック

- ▶ 高い運動量領域で比が一致
- フラックスも約10%の違い にとどまる

K^oフラックスが正しい

チェック(2) Cslのスペクトル

◆ Csl のエネルギー分布

Csl を用いたチェック

- ▶Ke3 の e のエネルギー分布が一致
- ▶Ke3の のエネルギー分布が一致

運動量分布が正しい

まとめ

結果

- 1GeV ~ 8GeV までの運動量分布を得ることに成功
- K⁰フラックスは 7.18 × 10² / 10¹⁰ protons Ke3,K µ 3 の結果、Csl のエネルギー分布が一致 得られた結果は信頼性がある